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ABSTRACT

We develop a method to approximately solve a large staircase linear program that
optimizes decisions over time. Also developed is a method to bound that approximation’s
error. A feasible solution is derived by a proximal cascade, which sequentially considers
overlapping subsets of the model’s time periods, or other ordinally defined set. In turn, we
bound the cascade’s deviation from the optimal objective value by a Lagrangian cascade,
which penalizes infeasibility by incorporating dual information provided by the proximal
cascade solution. When tested on a large temporal LP developed for US Air Force mobility
planners, we often observe gaps between the approximation and bound of less than 10 per-
cent, and save as much as 80 percent of the time required to solve the original problem. We
also address methods to reduce the gap, including constraint extension of the Lagrangian

cascade, as well as exploitation of dual multipliers within the proximal cascade.
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EXECUTIVE SUMMARY

This dissertation develops techniques to solve very large instances of a linear pro-
gram that optimizes US Air Force (USAF) strategic and tactical airlift for regional con-
tingencies. Until recently, simulation and spreadsheet models were used for airlift analysis
because sufficiently detailed optimization models were intractable due to their size. In order
to facilitate the use of highly detailed mobility optimizations, we develop the proximal cas-
cade, which approximates the solution of large linear programs that involve decisions over
time, location, or priority. We also develop the Lagrangian cascade, which quantitatively
assesses the approximation’s accuracy.

A linear program may be approximated by the proximal cascade when a model’s
decisions directly affect only proximal decisions, i.e., those that are closely related by some
attribute such as time. A proximal cascade first considers only the earliest decision periods
of a model, and then cascades forward in time to consider the decisions of later periods.
The number of periods considered by each stage, or cascade subproblem, is often limited
by the computational power available. Alternatively, subproblem size can be determined
by the level of future uncertainty encountered in the system being modelled.

We assess the accuracy of the proximal cascade by the Lagrangian cascade. La-
grangian cascades also consist of proximally related subproblems, made separable by not
enforcing resource limitations that involve the time periods of multiple subproblems. In-
stead of explicit enforcement, these resources express their scarcity by charging a consump-
tion penalty, similar to the ones used in the proximal cascade.

A proximal cascade solution enforces all resource limitations in one or more sub-
problems. Therefore, its solution does not violate any of the assumptions made by the model
formulation. However, its solution may not be the best possible, because it is encumbered
by not being able to consider all periods at once. Conversely, a Lagrangian cascade may
provide a solution that violates resource limitations, but is more economical by some ob-
jective cost measure than a fuily constrained solution. Therefore, the two cascade objective

costs bound the optimal objective cost, which is the cost when all periods are solved at once.
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The two cascades are also related by consumption penalties. All linear programs
yield as part of their solution, marginal values for all of the constraining resources. Marginal
values from the proximal cascade are used in the Lagrangian cascade as appropriate penalty
levels for consumption of the resources whose limits are not enforced. This circumvents a
long search for the appropriate penalties that frequently hamper similar relaxation-penalty
methods.

The Naval Postgraduate School/RAND Mobility Optimizer (NRMO) provides an
excellent opportunity to test proximal and Lagrangian cascades. This model is the latest in
an evolution of linear programing optimization models that address the increased interest in
airlift mobility as a result of the Gulf War. NRMO optimizes decisions involving numerous
aspects of a deployment, including strategic airlift mission and crew assignments, aerial
refueling missions, intra-theater deliveries, and recovery options. Consequently, the size of
this model can be huge.

When tested on several NRMO scenarios, the percentage gap between the proximal
and Lagrangian cascade objective costs is often within 10%. In other words, the cost of the
proximal cascade solution is within 10% of the optimal solution cost. Computation times
vary, but can take as little as 20% of the time required to solve all periods at once

Cascades provide a useful approximation and bounding strategy for linear programs
that exhibit a proximal decision structure. The method permits solution of model scenarios
that are much larger than are otherwise possible, and has applicability to a linear program

currently in use by the USAFE.
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I INTRODUCTION

Large mathematical programs often require indirect solution methods that exploit
the problem’s structure. When the variables and constraints of a mathematical program
can be ordered by some attribute such that all variables within any constraint are ordinally
proximate, that mathematical program can be characterized as a “staircase model.” The
purpose of this research is to formalize a heuristic that exploits the structure of staircase
linear programs, and provide a bound for that heuristic’s accuracy. Once developed, we test
the heuristic and bound on a large linear program used by the US Air Force (USAF) for air
mobility analyses.

Staircase linear optimization models are widely used in many areas such as schedul-
ing, where decisions of a given time period directly affect only the decisions of proximal
time periods. The success of linear and integer programming (LP and IE, respectively) in
aiding schedulers is well known. These models frequently consider a large but finite solu-
tion horizon [Walker and Dell, 1995], which is the number of time periods included in a
scheduling model. Unfortunately, these models are limited by temporal considerations in at
least two ways: 1) a distant solution horizon may make gathering accurate data for the latter
periods problematic, and 2) a sufficiently large solution horizon may produce a model that
is too large to solve. Not surprisingly, 2 human scheduler faces the same difficulties, namely
reconciling the increasing number of options with decreasing certainty as the solution hori-
zon grows. For either the human scheduler or the optimization model, perhaps the most
straightforward way of dealing with the difficulties presented by a large problem is to fo-
cus on a subset of the problem’s time periods, and then move forward to a new subset. This
temporal myopia, or inability to see the full problem at any one point, may resultina subop-
timal solution, but can make the problem simple enough to solve. Moreover, a model that is
used to mimic scheduling, but not produce schedules, may be best if it can incorporate the
realism of myopic scheduling. For example, when selecting fleet size or infrastructure in

order to maximize a delivery system’s effectiveness, a model should not unduly anticipate



delivery requirements far into the future. Thus, myopia is a desirable model characteristic
whenever perfect foresight is unwarranted.

Modeling myopia is acceptable and realistic provided the resource commitments
(constraints) initiated by decisions are short relative to the solution horizon. In an LP this
constraint-enforced linkage of a time period’s variables only to nearby periods resembles a
staircase along the main diagonal of the constraint coefficient matrix. The rest of the co-
efficient matrix is relatively sparse, since variables associated with the early time periods
rarely appear in constraints corresponding to the later time periods. Thus, temporarily ig-
noring the variables and constraints associated with later periods may have only a small
effect on the “early” portion of the solution, since most of the constraints for those periods
are left intact.

Once a schedule is produced for a limited number of early periods, the earliest deci-
sions are fixed, and the model “cascades” forward in order to solve for a later set of periods.
Webster’s [1993, p. 345] defines a cascade as:

“ A succession of stages (as in a process or in the arrangement of the parts

of an apparatus) in which each stage derives from or acts, sometimes cumu-

latively, upon the product or output of the preceding.”

In a mathematical program, a cascade implies generating a feasible solution by solving
only a subset of a problem’s constraints and variables, and then moving to a new subset
corresponding to later time periods. Each of these cascade subproblems should re-solve
a portion of the previous subproblem in order to minimize the end effects caused by the
temporal limitation. This method of approximating an LP solution was first suggested by
Charnes and Cooper [1961, pp. 370-388], and is often used to truncate problems with
a theoretically infinite number of time periods. In contrast, a goal of this research is to
implement a prozimal cascade heuristic; a heuristic that sequentially selects and solves
portions of a model whose variables and constraints are finitely indexed by an ordinally
defined set such as time periods.

The closeness of a proximal cascade approximation to the overall LP solution is
dependent on many scenario-specific factors. In order to supplement the proximal cascade

approximation, this research also develops an optimistic bound on the LPs solution value



by exploiting information derived from the proximal cascade. When ordered by a time
index, staircase LPs may have constraints that link only proximal time periods; relaxing the
constraints associated with certain time periods can decouple a large problem into several
subproblems. Lagrangian relaxation has long been used for this; it discourages violation
of relaxed constraints through penalties. The Lagrangian penalty is applied to a series of
separable problems, and an optimistic bound for the solution’s objective value is derived.
Unfortunately, finding the correct penalty values for relaxed constraints is often as difficult
as solving the problem without the relaxation. However, this research shows that reasonable
penalties for the relaxed constraints are readily available from the “ shadow prices” of a
proximal cascade solution. A Lagrangian cascade produces a bound on the LP solution
by incorporating the proximal cascade penalties into a series of decoupled subproblems.
When combined with the proximal cascade approximation, the size of the gap between the
two values gives a quantitative assessment of proximal cascade accuracy.

Once developed, we demonstrate proximal and Lagrangian cascades on a large LP
currently in use by USAF analysts for mobility planning. This model, under development
concurrent with the cascade research, defies the long held opinion among many Air Force
planners that LPs with sufficient detail to model the underlying mobility system are cur-
rently intractable due to their size. Proximal and Lagrangian cascades provide a methodol-
ogy by which to allay that criticism, and are examined in this research using instances of
the mobility LP.

A cascade can be used on a wide variety of problems for several different reasons,
and may often be improved by altering problem structure or further exploiting dual infor-
mation. We complete this research by examining how cascade performance on general LPs

can be predicted and enhanced.

A. LITERATURE REVIEW

The topics germane to the research include decomposition of large LPs, Lagrangian
relaxation, time-based or proximal methods, and military mobility optimization. While

there is a wealth of literature on decomposition and Lagrangian relaxation, proximal meth-



ods and military mobility optimization are sparsely documented. Below is a summary of

the literature.

1. Decomposition

The notion of incorporating dual information to decompose large linear programs
into smaller, structured LPs originated with Dantzig and Wolfe [1960], and Benders [1962].
Both methods rely on passing primal and dual information between a master problem,
which addresses the original problem in a simplified form, and one or more subproblems,
which address portions of the problem in detail. These subproblems often exhibit a compu-
tationally exploitable structure.

In Dantzig-Wolfe decomposition, the subproblems use dual prices from the master
problem in order to derive new variables for the master problem that will price favorably
in subsequent iterations. In turn, the master problem takes a convex combination of these
new variables to produce a feasible solution to the overall problem, as well as new resource
prices for the subproblems. The method converges when the subproblems cannot find a
variable to price favorably in the master problem.

Benders’ decomposition of an LP is similar in many respects to Dantzig-Wolfe de-
composition since the Benders’ master problem is the dual of the Dantzig-Wolfe master
problem. Consequently, instead of solving the master problem with a subset of variables
(as in Dantzig-Wolfe), the Benders’ master problem solves a subset of cuts derived from
a reformulation of original constraints, but in the dual. In turn, the Benders’ decomposi-
tion subproblems use the current master problem solution to produce a violated constraint
to be appended to the next master problem iteration. The method has converged when the
subproblem solution can no longer find a violated constraint.

Geoffrion and Graves [1974] use Benders’ decomposition to reduce a mixed integer,
multi-commodity transportation problem into separable single commodity problems. In this
formulation, the master problem dictates the configuration of the integer variables based on
cost information from the subproblems, while the subproblems determine the flows based

on the network provided by the master problem. Brown, Graves, and Honczarenko [1987]



extend this technique using elastic constraints to insure feasibility as well as improve con-
vergence.

Decomposition has also been applied to staircase linear programs by Glassey [1973]
as well as Ho and Manne [1974]. Their method repeatedly applies the Dantzig-Wolfe tech-
nique to succeeding (or preceding) levels of a staircase LB, forming a “nested” decompo-
sition. Each new staircase level acts as the next subproblem, which feeds back pricing in-
formation to its master (the previous staircase level), while sending variable levels forward
to the next staircase level. A staircase LP can also be decomposed by Benders’ method, as
shown by Van Slyke and Wets [1969] for two-stage stochastic programming, and later by
Birge [1985] for multi-stage stochastic programming.

Although not a decomposition technique, the solution of large-scale LPs can also be
approximated by aggregation of time periods until a problem of workable size is derived.
Zipkin [1980] describes a methodology for bounding the error incurred by such aggregation
in some problems. Although the idea has merit for large models, and has been used to
solve problems similar to the one described in this research, it has no direct applicability to

proximal and Lagrangian cascades.

2. Lagrangian Relaxation

Lagrangian relaxation is used in many optimization applications, including vehicle
routing, scheduling, and network design problems [e.g., Ahuja, Magnanti, and Orlin, 1993,
pp. 620-635]. Common to these methods is a search for accurate Lagrangian penalties of
the relaxed constraints, which has proved the most difficult aspect of the overall method.
Parker and Rardin [1988, pp. 205-237], as well as Bazaraa, Sherali, and Shetty [1993, pp.
199-231] give a summary of the search techniques. A Lagrangian cascade requires none of
these techniques, since the Lagrangian penalties are a by-product of the proximal cascade.
However, further tightening of the Lagrangian cascade bound could benefit from multiplier

search techniques. This remains a subject for further research.



3. Time-Based, or Proximal Methods

The use of temporally progressing solution strategies in optimization is of two va-
rieties; solution cascading and forward optimization. Brown, Graves, and Ronen [1987]
implement solution cascading by solving successive portions of a model’s time periods in
order to produce an advanced basis. For example, a problem with 15 time periods is split
into three smaller problems, each considering only rows and columns indexed with peri-
ods 1-5, 6-10, and 11-15, respectively. The optimal solutions of these subproblems are then
used to suggest columns that price favorably, as well as produce an advanced, or “crash”
basis for the original problem. With this “head start,” optimality may ensue in fewer itera-
tions. Jayakumar and Ramasesh [1994] demonstrate the computational savings of solution
cascading on a number of test problems. '

Forward optimization as outlined by Morton [1981] involves solving successively
longer (more time periods) problems until a decision horizon isreached. A decision horizon
is a point beyond which solving larger problems will not alter the decisions of the first time
period. This method shows that (for some problems) an optimal solution can be reached by
solving a succession of small LPs, and recording the values within each as optimal. Aron-
son et al. [1985] develop and test this idea for certain classes of problems, notably from
the area of manufacturing. Production scheduling problems where time periods are linked
only by inventory level exhibit natural decision horizons just after periods of maximum
demand. At these points in time, inventories are exhausted, effectively restarting the pro-
duction schedule. Thus, forward optimization is appealing when solving certain classes of
problems, but does not offer general applicability.

Manne [1970] offers related work on limiting the temporal horizon of an LP His
research provides sufficient conditions for optimality when truncating infinite horizon LPs
whose coefficients do not change in the latter periods. Walker [1995] extends this idea
to bound the error produced by truncating infinite horizon LPs prior to the point where
Manne showed equivalency between finite and infinite horizon problems. Unfortunately,
the infinite horizon method requires an invariant constraint structure beyond a specified

time period, which does not occur in all staircase problems. There is no body of literature



on the solution and bounding of large, but still finite, LPs by a proximal cascade, which
successively solves portions of a non-homogeneous staircase LP in order to approximate

an otherwise intractable problem.

4. Military Mobility Optimization

Dantzig and Fulkerson [1954] offered the first application of mathematical program-
ming to time-dynamic military transportation problems. Their work scheduling US Navy
tankers was seminal for military logistics optimization as well as time-dynamic network
transportation problems.

Until recently, the computational demands of LP in modeling large-scale Air Force
contingency deployments allowed an insufficient level of detail for many analyses. Con-
sequently, simulation was the method of choice for analyzing fleet mix and infrastructure
requirements of such a deployment. Wing et al. [1991] developed a time-dynamic LP as a
response to the Mobility Requirements Study mandated by the National Defense Authoriza-
tion Act of 1991. Yost [1994] continued the integration of LP into the mobility modeling
arena with the development of THRUPUT in 1994, which offered a detailed routing struc-
ture, but was temporally static. Concurrent with Yost’s work, the RAND Corporation devel-
oped CONOP [Killingsworth and Melody, 1994], which also focused on airlift, but initially
examined the efficacy of aerial refueling of airlifters in a contingency. Lim [1994], Morton,
Rosenthal, and Lim [1995], and Rosenthal et al. [1996] extended THRUPUT with the de-
velopment of THRUPUT II, which incorporated the multiple time periods into Yost’s work.
Subsequently, RAND’s CONOP model and THRUPUT II were merged into the Naval Post-
graduate School/RAND (NPS/RAND) Mobility Optimizer [Rosenthal et al., 1997], which

is the case study considered in this dissertation.

B. EXPLANATION OF TERMS

Several key terms have a specific meaning in this research. A comprehensive list

follows:



Monolith: A formulation a linear program. Many definitions that follow consider portions,
or subsets of the monolith.

Row: A constraint of the monolith, defined by its indices, technological coefficients, sense
(<, =, or >), and right hand side.

Column: A variable of the monolith, defined by its indices, coefficients, and bounds.

Association: If a row and column intersect with a nonzero technological coefficient, then
they are said to be associated.

Cascade index set: A scalar attribute assigned to each row and column. The scalar may
be an index, or a distinguished null index (conventionally zero) when the assignment of a
specific scalar is inappropriate (this occurs if a row or column has no corresponding cascade
index). The idea is to assign non-null scalars that express a relation or proximity among
rows and columns with identical or nearly identical non-null indices.

Active Index Set: A distinguished subset of contiguous cascade indices and the null index.

Linkage: A row associated with columns endowed with distinct cascade indices creates a
linkage between the indices.

Active Row: Row endowed with an active cascade index.

Lagrange Row: Row other than an active row represented only by its Lagrangian relaxation
(referred to as “Lagrange-relaxed”).

Relaxed Row: Row that is neither active nor Lagrange-relaxed.
Active Column: Column endowed with an active cascade index.

Fixed Column: Not an active column, but endowed with some value which may influence
its associated rows. A fixed column’s value equals its level when made inactive, or zero if
the column has never been active.

Subproblem: Active rows and columns, where the objective may include terms contributed
by Lagrange-relaxed rows and fixed columns, and the right hand sides may be influenced
by fixed columns.

Cascade: A sequence of subproblems. The motive for using a cascade is to indirectly as-
semble an acceptable answer to the monolith with less effort than an outright direct attempt
at solution. A cascade may, or may not, culminate in a strictly feasible, optimal solution to
the monolith. However, prescribing a useful solution for the problem from which the model
monolith derives is the goal and guide.

Width: The range of non-null cascade indices active in, say, a subproblem or a row.

Overlap: The range of the subset of non-null cascade indices in common between, say, two
subproblems or two rows.

Proximal Cascade: A non-separating sequence of subproblems, each of which has width
intentionally constrained to represent some limited effective planning horizon less that the
total number of cascade indices. A proximal cascade may be used to enhance computa-
tional tractability, or to temper unrealistic omniscience in a model monolith that represents
a problem that would in reality be dealt with myopically.
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Lagrangian Cascade: A separating sequence of subproblems defined by exhaustive par-
tition of the cascade index set and rendered disjoint by Lagrangian relaxation of any row
associated with two or more subproblems.

Gap (absolute): The absolute value of the difference between the proximal and Lagrangian
cascade objective function values.

Solution quality: The inverse of the absolute gap between the monolith objective function
value and the (proximal or Lagrangian) cascade objective function value. Solution quality
equals infinity when this absolute gap is zero; solution quality equals zero when the cascade
is infeasible or unbounded.

Gap (relative): The absolute gap divided by the absolute value of its more favorable con-
stituent value (the lower value for a minimization problem). Relative gaps are assumed
herein.

C. OVERVIEW

Chapter II develops proximal and Lagrangian cascade theory. The context usedis a
production setting, with the time index serving as the cascade index set. Rather than use the
simplest staircase model, this chapter incorporates formulation complexities that ease the
transition into the case study. Foremost among these characteristics is “elastic demand,”
which serves the dual purpose of supporting the case study, as well as demonstrating the
flexibility of a cascade beyond simple staircase models.

Chapter I1I outlines the implementation of proximal and Lagrangian cascades by
presenting a discussion and pseudocode of each. The remainder of the chapter considers
the ramifications of heuristic parameter selection on problem feasibility and solution quality.

Chapter IV describes the USAF mobility model under development at NPS, and
gives specific formulations for the proximal and Lagrangian cascades. Much of this chapter
reconciles the theoretical development with the inevitable complexity of a “real world”
model. The rest of the chapter describes cascade performance on a number of problem
instances.

Chapter V generalizes a cascade to an arbitrary model, and offers a method to assess
whether a model cascade might produce a feasible result of good quélity. The chapter also
discusses what conditions suggest whether or not a model cascade is warranted. Finally,

the chapter considers how additional dual and primal information may be incorporated to
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improve cascade solution quality. The most interesting of these methods uses an approach,
similar to Benders’ decomposition, to iteratively reduce the cascade gap.
The research is concluded in Chapter VI, which summarizes the theoretical and

computational results. Chapter VI also suggests future opportunities for cascade research.
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II. CASCADE THEORETICAL DEVELOPMENT

This chapter introduces and develops proximal and Lagrangian cascades. Although
there are many variations of staircase problems, this research principally considers a schedul-
ing problem that is formulated as an elastic-demand staircase model. To that end, this
chapter first derives the single-commodity, elastic-demand staircase model from a familiar
production-scheduling LP. Subsequently, we use that model to introduce the proximal cas-
cade by segmenting it into smaller pieces. This segmentation produces a series of smaller
problems that jointly approximate the monolith. Next, we develop proximal cascade theory
for a multi-commodity elastic-demand staircase model, as well as for a generalized stair-
case model without elastic demands. Finally, the chapter introduces Lagrangian cascade

theory, which provides a bound on the monolith’s optimal objective value.

A. SINGLE-COMMODITY ELASTIC-DEMAND STAIRCASE LP

Preliminary use of a simple model is warranted. Although the case study for this
research focuses on a military mobility scenario, the most familiar model setting involves
scheduling of manufacturing resources. Consider the following single-commodity
production-scheduling LP with elastic demands, multiple period lead times, and no inven-
tory costs. In this case, assume the lead time is two periods, so production started in period

¢ consumes resources in periods ¢ and ¢ + 1, and can meet demand as early as period £ + 1 :

INDICES

t Time periods (¢ = 1,2...T")

DATA

d; Demand in period ¢ (d; = 0)

S Production resource available in period ¢ (s; > 0)

Qg Production resource consumption in period ¢ per unit of

production started in period t'. (In general, a;y is not
restricted to be positive unless specified.)
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VARIABLES

Xi production started in period ¢ (X7 = 0, due to lead time)
I inventory at the end of period ¢ (I; = 0, I = 0)

) 2 elastic variable for unsatisfied demand in period ¢
FORMULATION

T
min E B
t=1

s.t. Xen— L+ L1+ P =d; 1<t<T
anXi < 81
att—1Xe—1 + a0 Xty < St 1<t<T
arr-1X71-1 < ST
X, I, P, >0 Vi

Assuming that all the demand is in the last period, i.e., d; = 0 Vt < T, the inventory
variables may be eliminated by noting that I, = X, and I; = X;_1 — I;—; (see Johnson
and Montgomery [1974, pp. 197-199] for a detailed discussion). Rewriting P, as P, the

problem may be reformulated as

(A) ZA = min P
T-1
s.t. > X.+P=d 4.1
t=1<111X1 <s 4.2)
ag -1 Xi-1 + ap Xy < S 1<t<T (4.3)
arr-1X7-1 < ST A4.4)
P>0, X,>0 Vt. (4.5)

The remainder of this section assumes A has a finite optimal solution XtA, 1<t<T
(throughout this document, a superscript on a variable denotes the variable’s optimal value

in the superscripted problem).
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This simple problem offers a notationally straightforward way to demonstrate a cas-
cade on a staircase problem, and it incorporates the additional richness of a complication

such as elastic demand.

1. Segmented Approximation

A segmented approximation is a restricted version of a proximal cascade and it pro-
vides a good introduction. Problem A is made separable and approximated by removing,
or setting equal to zero, column, X, for some value of 7 between 1 and T' — 1. The fol-
lowing two maximization problems serve this purpose by separating a restricted version of
A into two subproblems, one optimizing periods 1 to 7, and the other optimizing periods
7+ 1to T. The objective of each is to maximize production, rather than minimize penalties
(We address the objective function sense in greater detail shortly).

Define the subproblem S47 (with the solution X1 <t < 7, and the solution
value Z*') by

(SAI) A maxi Xi
t=1
st apX, < s (SALI)
ag -1 X1 + o Xy < St I<t<T (841.2)
Qry1,7Xr < 874 (841.3)
X,>0 1<t<r (SAL4)

Similarly, define the subproblem S42 (with the solution X2, 7+1<t<T,and
the solution value Z**) by

(SA2) 7" = max %:1 X:
t=74+2
s.t. Orior42Xr+2 < Sra2 (S842.1)
at -1 Xi—1 + auXs < 8¢ T+2<t<T (§42.2)
arr-1Xr-1 < 8t (842.3)
X:>20 7+1<t<T. (S42.4)

13



Given these two subproblem values, a bound on the solution to A is readily avail-
able. Using the notation [z]T = max[0, z], the following proposition demonstrates this

relationship.

Proposition 2.1 IfSAI and SA2 have finite solutions, Z* < [d — Z*' — VAN

Proof: Removing the column X, (fixing at 0) from A produces a restriction, but also

hints at separability:

ZA < min P

ZXt+ Z X;+P=d

t=7+2

(SAI 1),...,(SAL4)
(S42.1),...,(SA2.4).

Solving for P, and noting that P > 0, the above is restated as

7A < min  d—33_; Xi— t—‘t' 2Xt ’
= | s.t. (S41.1),...,(SA1.4), (SA2]) ,(S42.4) |

The non-negative stipulation is an important aspect of the problem, since SA/ and S42 do
not restrict the variable sums to be less than d. Because the constraint structure is separable,

the right side of this inequality may be rewritten as

[d‘ ( s.t. (I;Z};.JZ): ggAJ 1) ) ( st (S42 JZ)H fSA24) )r

or:
[d— gsal _ ZsaZ]j*‘
Thus we have
74 < [d— Zsal _ Z.mz]-i-
0
Observe that the combined solutionsto S4/ and SA2 are feasible to A in the absence
of over-production, since restricting X, to zero makes A equivalent to S4/ and S42,

which are feasible by assumption. Thus, a feasible approximation to A is produced by
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solving small subproblems. Unfortunately, the bound may be weak when X ; is positive
in the optimal solution to the monolith. Moreover, the method does not work for more

complex problems. These shortcomings can be fixed by a proximal cascade, shown below.

2. Proximal Cascade Approximation

The segmented approximation removes columns to produce separable subproblems,
foregoing any potential objective function improvement from those columns. The proxi-
mal cascade partially redresses this disadvantage, and we will show that its objective value
is bounded from above by the segmented approximation just presented. This approach
also solves the problem in piece-wise fashion, but uses a sequential method that fixes col-
umn levels from the latter periods of preceding subproblems. In turn, those fixed levels
are incorporated into successor subproblems, allowing an approximation by a cascade of
subproblems. To demonstrate, assume that subproblem SAI has been solved, and that the
column levels of periods t < 7 are fixed. Since X,_; is the only column to directly in-
fluence periods 7 and greater, the second subproblem may be rewritten to incorporate SA7
using just the level of X,_; Towards that end, define problem C42 (with the solution
X, r<t<T—-1)by

72 = TXEX:‘“ + ma.xTX:1 X
t=1 t=T1
s.t. e Xr < 87 — Q7 X2 (C42.1)
i Xos ¥ auXe <8 T<t<T (CA2.2)
arr-1Xr-1 < ST (CA42.3)
X:>0 7<t<T. (CA2.9)

Additionally, let
Zeas — [d _ anZ]+ .
This value is the proximal cascade approximation of problem A. The following proposition

relates the solution value of A to its proximal and segmented approximations:
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Proposition 2.2 I[fSA1, SA2 and CA2 have finite solutions,

ZA-S Feas < [d__ Zsal _ Zsa2]+.

Proof: To show the right-hand inequality, first note that removing column X, restricts

CA2 , and thus

T—1 T-1
zZ=? > S X 4 max X, + > X

=1 t=T+2

s.t. arr Xr < 8= aT,T—lX:;:‘iil
ar+1,TXT < Sr41
Gry2,r+2 X742 < Srp2
am_lXt_l fapX: < S8 T+ 2<t<T
arr-1Xr—1 < St
X, > 0 74+1<t<T
T7—1
= Y X;” +max X,
t=1
s.t. ar- Xy < 8 — aT,T—IX;'-a_Il
a‘r+1,~rX-r < Sr+1
X 2 0
-1
+ max Z Xt
t=742
s.t. a'-r+2,T+2X'r+2 < Sr42
at’t_].Xt_]_ +attXt < 8 T4+2<t<T
arr-1Xr-1 < ST

Xt > 0 T+1l1<t<T

Zsal + ZsaZ'

Rearranging terms yields the desired result:
_ anZ S _ Zsa! _ Zsa2
ans — [d _ an2]+ S [d _ Zsal _ Zsa2}+ )

This is the right-hand inequality. Note also that X;*,1 < t < 7, and X, X§*,7+1 <
t < T is feasible to A, since S4/ and CA2 jointly enforce the constraints of A.
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To show the left-hand inequality, note that setting X,_; = X}/, restricts problem

A. Stated in the form derived at the beginning of the chapter:

i T-1 : +
d—max Y X;
=1

ZA p
| st (4.2),..,(4.4),(SAL4),(CA2.4), X, = X5

IN

T—2 T-1
d— X —max Y Xi+ > Xq
t=1 t=T1
s.t. (S41.1), (SA1.4),
a1 X1+ ap Xy <5 I<t<7T-—1
a“r-—l,'r—2X -2 < 871 — a"r-l,r-l-X“ﬁl
(CA2.1),...,(CA2.4)

t=1 t=1
[d _ an2]+ = Zeas
a
This result shows that a feasible approximation to problem A is obtained by proximal
cascade. This approximation is no further from the optimal solution value than a segmented
approximation of A, and it is better than the segmented approximation when production in
period 7 + 1 is beneficial. The next section shows that the proximal cascade also provides

a lower bound on the optimal objective value of A.

3. Lower Bound by Proximal Cascade

If the assumptions given to this point are supplemented with the non-negativity of
as, a lower bound on the solution to A is available from the proximal cascade subproblems.
Thus, for the cost of solving S4/ and CA2, one obtains a feasible approximation of the
solution to A, as well as an assessment of its quality.

To show this result, a preliminary lemma is required:

Lemma 2.3 Ifaw >0 Vt,t', 2% > S XA
t=1
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Proof: .
Zel = max  » Xi

t=1

st. (SALI),...,(SAL4)

v

max 3 X,
t=1
st (SA1.1),(SA1.2),(SA1.4)
a'r+1,‘rX'r S Sr41 — a"r+1,-r+1X7-+1

a

The equality holds because fixing X1 to XA | allows the remaining columns to
take their optimal values from problem A. With this lemma (and the non-negativity assump-
tion of au ), the following proposition establishes that a lower bound derives from “double
counting” the levels of columns that are active in both subproblems. In this case, X is the

“double counted” column, since it is active in both subproblems:

Proposition 2.4  [faw >0 Vi,t/, [d— 22— X" < Z4

Proof: Reducing the right-hand side of the period 7 + 1 inequality from
8741 10 Srp1 — Gry1., X2 is a restriction of subproblem C42 . Stipulating X, = 0 further

restricts CA2 :
7—1 T-1
Z? > ST X# 4+ max Y, Xy
t=1 t=71
st. (CA2.1)
a7'+1,7'X'r + a"r+1,'r+1X‘r+l < Sr41 — a1'+1,'r—X7Jfl
agp—1Xe-1 + a3 Xt < St T+2<Lt<T
X, =0
(CA2.3),(CA2.4)
7—1 T-1
= Y X+ max ), X:
t=1 t=7+1
st Gryrr1Xrh1 < Srq1— Grp1r XE
a1 Xio1+aXe < s TH+2<1<T
(CA2.3),(CA2.4)
7—1 T-1
= T X o+ ¥ X4
t=1 t=7+1
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The last equality holds because fixing X, to X4 allows columns indexed by periods 7 + 1
to period T to take their optimal values from problem A. Thus

T—1 T-1
an2 +X:;01 Z ZX;(J] +X:01 + Z XtA
t=1 t=7+1
T-1
_zmt Y XA
t=7+41

Combining this with lemma II.3, we have

T-1
an2 + X:;al 2 EX?,

t=1
or

T-1
S A
—Zea? _ X,,.al < __ZXt )

t=1
Thus

_ +
ca2? sal 1+ = A _ 7A
[d—2z= - x" < |d=)_ x| =2%
t=1 A

The results of this section use a very simple problem, but provide the groundwork for
the remaining research. However, these results must be generalized to multiple commodities
and other staircase problems before they become useful for the motivating problems of
this dissertation. During the course of this development, we show that only the proximal
cascade upper bound holds in a more general setting. Thus, a revised lower bound must be
developed. That development, as well as the generalization of the proximal cascade, is the

subject of the remainder of the chapter.

B. MULTI-COMMODITY ELASTIC-DEMAND STAIRCASE LP

Although the single-commodity elastic-demand staircase problem offers interesting
results with respect to a proximal cascade, its usefulness is limited by the assumption of a
single-commodity. These next two sections generalize proximal cascade results, first to the

multi-commodity problem, then to more general staircase models.
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1. Inapplicability of Segmented Bounds

Unlike its single-commodity counterpart, the multi-commodity elastic-demand stair-
case problem does not easily lend itself to segmented solution. Consider the following

two-period problem with two commodities referenced by X and Y:

(A1) ZA* =min +Px +Py
s.t X +X5 +Px = 10
+Y +Y, +Py = 10
2X, +1n < 6
2X, +Y7 42X, +Y; < 12
+3X, +Yo < 6
XL Yh Xo Yo Px, B 2 0,

which has solution
ZAl = 9, X{ll — 17 Y'lAl — 4’ X;ll — 0, Y2A1 — 6, P)x{‘ll = 9, PAl =0.

Also consider the subproblem

(AQ) ZA2 =max X; +Y1 +X +Y>

s.t 2X, +1 < 6
2X, +Y; +2X, 4Y, < 12
+3X; +Y:, £ 6

X, Y, Xo Y5 20

which has solution
ZA2 — 12, Xi42 — 0, X542 = 0’ YiA2 — 6, Y2A2 =6.

Direct extension of the segmented approach to the multi-commodity case requires

the equivalence of Z4*and [dx +dy — Z 42] * However, this does not hold here, since
ZA = 9>8=[dx +dy — 24"

The difficulty springs from overproducing the “easy” commodity Y and using it
to offset under production of X, which consumes more resources. While it is possible
to redress this shortcoming by retaining the original form of the demand rows, doing so
eliminates the ability to show that the segmented problem is an upper bound to the proximal

cascade solution. Consequently, the segmented approximation is not considered further.
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2. The Multi-Commodity Proximal Cascade

Despite the inability to use the segmented solution as a bound on the proximal cas-
cade, a proximal cascade provides an upper bound on the problem of interest, namely a
multi-commodity elastic-demand staircase problem. Below is the general formulation of
this problem, where each commodity has an allowable production time window of consec-

utive periods. This problem will serve as the monolith for the remainder of the chapter:

INDICES AND INDEX SETS

1€l Commodities

t,t’ € T Time periods

teT; Allowable time periods for initiating production of 4

t' € TS; Periods of initiated production that consume resources in period ¢

DATA
d; Demand for commodity 7, due when production begun in the last
period of T; is complete
h; Penalty per unit of not delivering commodity ¢
St Production resources available at time ¢ (s; > 0)
Q' Resource consumption in period ¢ per unit of ¢ begun in period #'
Thus, a;; = 0 unless ¢’ € TS;
(in general, a;; is not restricted to be positive unless specified)
VARIABLES
X; Production of i begun in period ¢
P, Elastic variable for unsatisfied demand of commodity %
FORMULATION
(B) ZB= min Y AP
i€l
teT;

> Y awXe<s VteT (B) (B2)

i€l t'eTiNT S
Xy P>0Viel teT (B3)

Assume B has a finite optimal solution, X2, P? Vi, t.
Now consider N overlapping subsets of contiguous time periods within set T that

suggest subproblems (Figures 1 and 2):
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n=1

n=

n=

n=N

Time \
7

Figure 1. Sequence of subproblems forming a proximal cascade. The subproblems contain rows and columns indexed by
overlapping subsets of active time periods.

Define the following:

firstp™  First time period of subproblem n
lastp™  Last time period of subproblem n
caswid max, [lastp™ — firstp™] + 1, the proximal cascade subproblem width
c™ {t € T : firstp™ <t < lastp™} , the active index set of subproblem n
m max, [|7S;|] — 1, the maximum resource utilization (staircase) overlap
v lastp™ — firstp™*! + 1, the number of time periods overlapping each
subproblem (cascade overlap, assumed to be constant)
{t € T : firstp™ < t < firstp™*'} forn < N
{teT:firsp™<t}, forn=N
the periods of T7C ™, up to , but not including firstp™*!.
NC n = {1, ..., N}, the set of subproblems forming the proximal cascade

TF™

Note that there are two overlap parameters defined. Parameter m is the staircase
overlap, and is a characteristic of the LP formulation. In contrast, v is the cascade over-
lap, and is a proximal cascade parameter. The next chapter discusses the ramifications of
choosing v. However, v should be at least as large as m in to promote cascade feasibility.

The above definitions permit specification of N proximal cascade subproblems,

CAS™. Under the assumption that a finite optimal solution exists, let X7, P solve
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TF" (fix after subproblem)
TC" (active subproblem)

—Y
| Y7 1 | /i
'Fixed e Active 8 "Refaxed '
2 @
Y = = y
Tc et

Figure 2. A single proximal cascade subproblem optimizes rows and columns indexed by the active set (¢ €7C ™). Thus
it re-optimizes rows and columns indexed by time periods active in the previous subproblem, ¢ €TC »~IATC™. Rows
of future time periods are relaxed, future columns are fixed at level 0. Columns of subproblem n that are not active in
subproblem n + 1 (indexed by t €TF ™) are fixed at the end of n.

(CAS™ Z"=min h;P;

[1=34
st. > Xa+P=di—) > Xy viel (CAS™.])
teT;NTCn n'<n teT;NTF™
Z Z Qite Xivw < 8¢ — Z Z Z aw X VteTC™
i€l teTyNTSNTC™ n'<n i€l ¢eT,NTS,NTF
(CAS™.2)
X, ;>0 Viel,teT,NTC". (CAS™.3)

The proximal cascade heuristic proceeds as follows (a detailed pseudocode is given

in Chapter III):

For eachn eNC {
Define and solve subproblem CAS™ given above
Fix the value of X} Vi€ I, t €TF™

¥
Output proximal cascade solution: X Vi € I, t €TF", n €NC, with value ZN.

Each subproblem n activates all penalty columns and demand rows, but only the X
columns for ¢ € TC™ . However, the subproblems have successively more fixed X7} values
from previous subproblems. Thus, the demands of the last subproblem NN are reduced by
the solution values from TF ! through TF ¥~1. Similarly, staircase row right-hand-sides are

reduced by fixed terms from previous subproblems.
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Single Commodity Subproblem Multi-Commodity Subproblem

Active : Active
ys Relaxed Relaxed
Oh{s‘ - QO‘V 5
TC TC

Figure 3. Unlike its single commodity counterpart, a multi-commodity proximal cascade subproblem excludes both
columns and rows indexed by future time periods. These rows are required only for the segmented results of the previous
section, and may cause infeasibility in more genera!l problems.

In addition to multiple commodities and generalized notation , CAS ™ differs slightly
from the single-commodity subproblem C42. Figure 3 illustrates that a subproblem C4AS ™
ending with period ¢ activates the staircase rows only up to period ¢, while the single-
commodity method activates all remaining rows associated with period ¢ columns. Whereas
these additional rows are useful when comparing to the segmented solution, they are not re-
quired in the general case, and may cause infeasibility or reduce solution quality of the
cascade. For example, consider a model where a; is negative for the latter columns of a
staircase row. Activating the row without those latter columns may force other associated
columns to unnecessarily low values in order to maintain feasibility. Thus, any staircase
row whose associated columns are not either active or fixed is not activated in CAS ™; each
subproblem ends with the staircase rows indexed by the last period of 7C ™.

The following theorem shows that the solution value of a cascade’s final subproblem

(Z™N) provides an upper bound on B.
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Theorem 2.5 ZB < ZN.

Proof:
ZB = min > hP
icl
s.t. (B.l),(B.2),(B.3)
S min 2 h,PL
i€l
s.t. (B.1), (B.2), (B.3)

Xyz=X: VYn<N,teT,NTF"

= min Z hz]D2
el
st (CASN.1),(CASM.2),(CAS™M.3),

= ZN.

The inequality holds since fixing a subset of X, restricts the original problem.
(]

Although similar to the proof given for the single-commodity problem, this proof
restricts all column levels for ¢ <firstp ™ to their associated subproblem’s value. However,
fixing only the columns of the overlapping staircase periods (firstp™ — m < t <firstp™,
Vn €NC) gives the same result, since that restriction results in separable problems, namely
CAS™,¥n eNC.

The above proof shows that the proximal cascade solution provides an upper bound
on ZB. Additionally, the solution given by the cascade result (X;,Vn € N,i € I, t €TF™)
is feasible to B, since the rows of B are enforced by the rows of CAS™ Vn ENC .

C. PROXIMAL CASCADES WITH BASIC STAIRCASE LPs

A proximal cascade is applicable to basic staircase models. This section extends the
upper and lower proximal cascade bounds (developed for the single-commodity demand
problem) to a simple staircase problem.

Consider problem S below. Parameter h; is defined as the objective cost coefficient;

otherwise the notation is the same as in problem B.
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(S) ZS =maxz htXt

teT
s.t. Z awXpy <sg VteT (S.1)
t'eTS: .
X, >0 vteT (S.2)

Similarly (using the same notation as in CAS ™), consider the cascade subproblem SCAS™:

(SCAS™ z"=3" 3 hXP +max Y kX

n/<n teTFn' teTCn

s.t. Z ant, S St — Z Z atthgl Vit € TCm (SCASn])
t'eTSNTC™ n'<n ¢ €T S,NTF™

X: >0 vte TC™. (SCAS™.2)

In addition to the formulation differences, SCAS™ differs from CAS ™ by a constant
term in the objective function. When demand is reduced by previous subproblems, each
CAS™ optimal objective value becomes progressively lower. The basic staircase model
SCAS™ on the other hand, must explicitly incorporate a contribution from previous sub-
problems. The solutions from these previous subproblems n’ < n are summed only over
the set TF™ in order to avoid “double counting” columns indexed by periods inside the
cascade overlap.

Let X7 Vt € T and X V¢t €TC™ solve S and SCAS ", respectively (as before, as-
sume SCAS™ has a finite optimal solution for all n €NC'). The following theorem shows
that the proximal cascade solution value bounds the monolith solution value from below.
Additionally, if a;y > 0 Vt,t, a proximal cascade also provides an upper bound to the
monolith solution value. The upper bound is the sum of non-constant objective terms from
all periods in all subproblems (thus it includes cascade overlap double counting). The lower
bound is ZV, the sum of objective terms from the non-overlapping periods in all subprob-

lems.
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Theorem 2.6

75> 2N,  andifaw >0V%4t, Y. Y X >Z5
neNC teTC™

Proof: For the first inequality,

ZS = maX thXg
teT

st. (S1),(5.2)

Vv

teT

s.t. (S.1),(5.2)
X,=X" Vn<N,teTF"

= 5 YirhXF+ max Y hX, (SP2)
n' <N teTCN
st. (SCASN.1),(SCASN .2)

= zZN.

SP] is a restriction of the original problem because all of the solution values are
fixed except for the last subproblem’s values. As with CAS™, SCAS™ is feasible to the
monolith since the rows of the subproblems jointly enforce the rows S.

To show the second inequality, begin with the sum of the non-constant objective

terms from the proximal cascade subproblems:

h X,
Z thXf=Zmax te%n .
e i oem L T | st (SCAS™1), (SCAS™.2)
i (SL.T)
ZC h:X:
teTCn
> > max | g4 (SCAS™.1),(SCAS™2) (SL.2)
neNe | X,=0 VteTCrnTC™
h: X,
teTCM\TCn—1
= Z max s.t. Z att/Xt' S St YVt € TC’"\TC"’I
neNC teTS,N(TC™\TC"1)
X, >0 t € TC\TC™
(SL.3)
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he Xt
teTCcr\TC™1
s.t. Z atthS

> . t'eTS:NTCn—1
= Z max + Z a’tt’Xt’ < 8 vVt € TCn\TC‘n,—l

neNC # €T SN(TCP\TC—1)
X, =X} vVt e TC*NTC™!
X:>0 vt e TCM\TC™?
(SL.4)
= max Y hX;
teT
st. Y, awXp <s VEET (SL.5)
t'eTS
X:>0 vteT
=275,

SL.2 is a restriction of SL.1 since all of the columns indexed by periods of the lead-
ing subproblem overlaps are set to 0. This isa nontrivial restriction if the cascade overlap is
large. SL.3 is a restatement of SL.2, since no resources are used by columns set to 0, which
include any columns that might use resources in the remaining active periods. Additionally,
the row domain of the staircase constraint from SL.3 may now exclude the overlap rows,
since they contain only constants. These are the only rows that could include fixed terms
from previous subproblems, so that term may be dropped. SL.4 further restricts the prob-
lem by including resource consumption of X 5 from columns of the preceding subproblem’s
staircase overlap. SL.4 also restricts the problem by fixing (to X5) all the columns that ap-
pear in the succeeding subproblem’s rows. Finally, SL.5 reflects that a subproblem whose
overlapping staircase values are set to the optimal solution (on either side) must produce
optimal values when solved.

a

This result provides an optimistic bound (upper for a maximization problem) and a
feasible bound (lower for a maximization) on the monolith, obtained for the computational
cost of solving the proximal cascade. However, the usefulness of the optimistic bound is re-
duced by the fact that it tends to be tighter with a minimal cascade overlap (v = m), while
the feasible bound tends to be tighter with a large cascade overlap. Additionally, the opti-

mistic bound requires non-negativity of the technological coefficients, which also restricts
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its applicability. The next section describes an optimistic bound with wide applicability—

one that can be used on any staircase problem.

D. LAGRANGIAN CASCADE LOWER BOUND

1. Development

Lagrangian relaxation has long been used to bound linear and integer programs by
solving partitioned subproblems. By partitioning subproblems along temporal lines, each
can be solved separately by (Lagrangian) relaxing rows that link active periods from differ-
ent subproblems. The structure of a staircase problem facilitates this, since most rows link
only a few proximal time periods.

Multi-commodity elastic-demand staircase problems complicate relaxation along
temporal lines because the demand rows link many time periods. However, the rows are
elastic, which establishes bounds on the corresponding dual variables. Consequently, ap-
propriate penalties in the relaxed problem stay within those limits.

The biggest advantage of using Lagrangian relaxation in a cascade is the availabil-
ity of dual information from the associated proximal cascade. One of the weaknesses of
Lagrangian relaxation is the computational effort required for the multiplier search. That
search is circumvented by the availability of the proximal cascade’s dual variables.

Consider once again problem B with finite optimal solution X7, PP Vi,t:

ZB = min Z hiP;
st S Xe+ Pi=d, viel (a) (B1)
St > awXiy < 8t vteT (8,) (B2)
i€l ¢’ eTiNTS:
X, ,>0Viel,tel. (B.3)
Dual variables are denoted o, 0;.

Consider a partition of T into L subproblems (Figures 4 and 5):
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Figure 4. A Lagrangian cascade partitions the rows and columns of a monolith into many Lagrangian subproblems of
contiguous time periods. Overlapping rows are Lagrange-relaxed.

The following notation and Figure 5 are also useful:

firstl ¢ The first time period in subproblem £

lastl The last time period in subproblem £

Iwid max, [lastl¢ — firstl¥] + 1, the Lagrangian cascade subproblem width
TR*® {t: firsti® <t < (firstl® + m)},£ # 1. The Lagrange-relaxed set,

the set of early periods of subproblem £ where staircase
rows overlap subproblem £ — 1

TL* {t : max(t € TR*) < t < lastl *} The enforced set, the set of later periods
of £ where staircase rows do not overlap subproblem £ — 1

TRL* TR ¢ U TL* The active index set of subproblem £

TO* {t : firstl® —m <t < first]*} The extended set, the set of active periods

in subproblem £ — 1 where staircase rows of subproblem ¢ overlap
TRL*UTO* The extended-active set

IL* {i : T;NTRL® # 0,T; N TRL** = 0} Partition of I into subproblems
This scheme places i into the last subproblem in i’s production window
CL {1,..., L}, The set of Lagrangian cascade subproblems

The active index sets (TRL ¢) may be chosen to closely correspond to the proximal
cascade active sets, T7C ™, or can be intentionally offset from those sets in order to improve

the latter’s dual variables. These strategies are discussed in the next chapter. Given these
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TRL®

TR ¢
T0¢ —— TL¢
Lagrange-
Rela.x.&
—4 [optimize Optimize L /2
— 77
ignore l..é J ¥ Ignore !
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Figure 5. A single Lagrangian cascade subproblem includes columns indexed by ¢ €TRL* (the active set ), and rows
indexed by t €TL . Other rows are relaxed, and a Lagrangian penalty is applied to the objective function coefficients of
the associated active columns (referred to as Lagrange-relaxed rows). An extension tightens the Lagrangian cascade bound
by activating “extended constraint” rows indexed by ¢ €TR* (the Lagrange-relaxed set). These rows use “duplicate”
columns indexed by t €TO* in order to preserve the relaxation.

sets, define the Lagrangian cascade subproblem LC':

ZLC = min Y hiP; (LC.1)
el
+> o (di"“ > Xit— Pz‘)
i€l teT}
+ E By | 5t — Z Z ey Xarr
te(U,TRE) i€l Y eT;NT St
s.t. Z E am:Xit/ S S¢ YVt € UzTLe (LCZ)
eI teT;NTS;
Xq,P>0Viel,teT. (LC.3)

The objective (LC.1 ) seeks to minimize the sum of unsatisfied demand, plus Lagrangian
penalties either associated with demand rows, or the staircase rows of the relaxed set. The
remaining structural constraints include only the staircase rows of the enforced set.
Because all of the linking rows between subproblems are Lagrange-relaxed, LC de-
composes into L subproblems with Z LC — 3, Z¢. Note a; is bounded above by A, and
thus the P, term is not favorable, and will remain at 0. It is left in the formulation for com-

pleteness. The subproblems LC ¢ are defined as
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Z¢ = min E R(h, - Oli) + Z o;d; (LC’el)
i€IL* i€lLf

-3 3 aXut+ Y Bist

i€l teTRL* teT R

-2 2 2 Bty Xiy
i€l teTREUT R¢+! ¢/ €T;NTS:NTRL¢
s.t. Z Z a'itt’Xit’ < 8 vVt € TLZ (LCZ2)
i€l t'eT;NT St
X, P, >0 VieILt t € TRLA (LC*.3)

Relaxing the problem in this manner allows the tractable computation of a lower bound on

ZB_ By the theorem of weak Lagrangian duality [Parker and Rardin, 1988, p. 206],

Z0 = sz < 75B.
£

A Lagrangian cascade proceeds as follows (a detailed pseudocode is given in Chap-
ter I1I):

Foreach £ €CL {
Define and solve subproblem LC ¢ given above
Record the value of Z*

é)utput the Lagrangian cascade solution value: Y, Z ¢

As stated earlier, the quality of this bound depends in large measure on the quality of
the dual variables. These variables, in turn, depend on the quality of the proximal cascade
solution. As the proximal cascade solution tends toward the optimal monolith solution,
the associated duals will tend toward the optimal monolith dual solution. Hence, there is
strong incentive for making the proximal cascade solution as close to the monolith solution

as possible.

2. Improving the Lagrangian Cascade Bound

Although optimal Lagrange multipliers ensure a tight lower bound on the problem
under consideration, small deviations in multiplier accuracy may produce an unacceptable,
or even unbounded result. This may be avoided by bounding the feasible region of the La-
grangian cascade subproblems. This section addresses two bounding techniques, extended

constraints and demand bounding.

32



a. Extended Constraints

A Lagrangian relaxation cannot be unbounded if all its variables are bounded.
Using a Lagrangian }cascade, we show here that a simple and effective bound on vari-
ables is generated by extending the staircase constraint enforcement into each subproblem’s
Lagrange-relaxed set, TR ¢, However, to avoid a problem restriction, associated columns in-
dexed by periods of the overlap set (70 ¢) are not identical to their monolith counterparts.
These columns are “duplicates,” and are denoted X;;. This method of generating dupli-
cate columns for the purpose of bounding variables inside the active index set is described
below.

Consider problem E, which is identical to B, but with constraint blocks BA
and B.5 added:

ZB =

il

st. Y. Xu+ P=d; Viel (B.1)
teT;

Y. Xy < St vteT (B.2)

i€l ¢ eTNT Sy
X, ,>0Viel,teT (B.3)
Z Z a/itt’—i;it' + Z Z a’itt’X'it’ S St Vt € Ue TRZ (54)
i€l ¢'eT;NTS:NTO* i€l ¢eT;NTS:NT R _
X.,>0veCL, iel,teT, TR (B.5)

B.4 duplicates all staircase rows for all of the relaxed sets J, 7R ¢. However,
within each subproblem, only the columns indexed by ¢t €TRL ¢ correspond to monolith
columns. Columns indexed by t €TO* are duplicated; duplicates do not appear in other

subproblems. Because of duplication, these rows cannot restrict the solution to B.

Theorem 2.7 _
7B > 7B,

Proof: Let X;; = X2 Vi,t € |J,JR®. Since X7 satisfies B.2 from the original
problem, X, must satisfy (B.4), which means X5 is feasible to B. Thus, Z B can be no

worse than Z5. O
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Infact,Z8 = Z B , since the duplicate columns do not contribute to the objec-
tive, nor do they allow the original columns to further contribute to the objective. However,
this is not central to the overall result, which is to show that a Lagrangian relaxation of B
is still a relaxation of B.

Since any Lagrangian relaxation of B provides a lower bound for B, one
that relaxes B.1 Vi, and B.2 Vt € |J,7R . provides such a bound. Defining the solution

value of this relaxation to be Z LC we have

The solution to the relaxation of B offers the benefit of bounding all variables
in the Lagrangian cascade. Since its implementation only involves generating duplicate
variables as the Lagrangian cascade progresses, this strategy may provide significant benefit
with minimal computational effort.

The extended constraints result has wide applicability to Lagrangian relax-

ation. Consider the following staircase problem:

Z* = max cfzy +dze +cfzs
s.t. A11$1 S b1
Anzy +AnT < be
Aspzy +Aszxzs < b3
z1, Zg, zz3 > 0.

This problem can be separated into two subproblems by relaxing the second constraint:

ZR = max Fz, +dzy +cizs + By (by— Ani— AgoTs)
s.t. All.’L']_ S b1
Aspzs +Azszzs < b3
zy, T2, zg 2> 0.

Alternatively, we can form separable subproblems by duplicating z; and using the extended
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constraints Lagrangian relaxation:

ZBLR = max ci'n +cfzy  +czy + Bo(by — Anzi — AxnTs)
s.t. A11£L'1 S b1
AnZy +Axnz; < b
Aspzy +Aszzzzs < b3
Ty, 511 T2, Z3 Z 0.

Both ZLE, and ZELR provide upper bounds for Z*, but ZELE provides a tighter bound by
Theorem IL.7:
7* < ZELR < ZLR.

To illustrate the benefits of extended constraints, consider the following stair-

case LP:
max 2X1 +4X2 +X3
s.t. X1
Xl +X2 (ﬁz)

Xs +X3
X, Xo X3

IV IAIAIA

2
3
4
0.

A solution to this problem is: X3 = 3, X3 = 1, with value 13. Lagrangian relaxation of

the second row results in the following for 8, > 0:

max 2X; +4X, +X3; + 52(3—’X1—X2)
s.t. X1 S 2
X, +X3 < 4
X1, Xo Xz = 0.
When 3, = 1, the above may be rewritten as
3 +max X; +max 3X: +X3
st. X7 < 2 st. Xo +X3 < 4
Xl > 0 X27 X3 > 0.

This has a solution X; = 2, Xo = 4, with value 17, which is an optimistic bound on the

first problem, Z* = 13. However, the bound may be tightened by duplicating X; with X 1,
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and incorporating the method of extended constraints:

3 +max X; + max 3X, +Xs
st. X1 < 2 s.t. X’l +X5 < 3
X, > 0 X, +X;3 < 4
X, X. Xs > 0.

This has solution X; = 2, X, = 3, with value 14, resulting in a tighter bound than 17.

b. Demand Bounding

In addition to the method of extended constraints described above, the qual-
ity of the Lagrangian cascade solution may be improved by assuring that each subproblem
satisfies no more demand than the total required by a Lagrange-relaxed demand row.

Consider problem B, which is identical to B, but with additional constraint

stipulated by B.4 :

(_E) ZB= min Zh,R

i€l
s.t. ZX“:‘}‘ P, =d; Viel (B])
teT; _
Y Xu<d; VielVieCL (B4)
teT;NTRL,
(B.2),(B.3).

Note that B.4 is redundant given B.1 in this formulation, but ceases to be so when B.1 is
relaxed. Hence, B and B are equivalent, but the relaxation of B provides a better lower
bound on Z5.

Demand bounding also applies to Lagrangian relaxations of more general
mathematical programs. Given that all elements of A,y and A, are non-negative, consider

how demand bounding can tighten the solution bound of a simple staircase problem:

Z* = max cfz; +chzy +clas
st. Apm < b
Anzy +AxTo < b
Azozy +Aszzzs < b3
Ty, T2, T3 Z 0
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< max clx +cfzy  +clzs + Bo(by— Anzi— Agxs)
s.t. Apz < b
A21$1 < b2
Agz) < by
Aspxy +Aszzz < bg
zy, Z2, z3 Z 0

< max cfz; +cz, +cizzs + By(be — Anzy — Azls)
s.t. Allml < bl
Aspzy +Aszzs < b3

z1, Z9, zz > 0.

Z* is bounded above by the Lagrangian relaxation with demand bounding (middle), which

is bounded above by the un-enhanced Lagrangian relaxation (bottom).

E. SUMMARY

This chapter develops bounds for staircase problems using proximal and Lagrangian
cascades. A proximal cascade provides an upper bound (if a minimization problem) by
solving a sequence of subproblems. Under the restricted condition of non-negativity of the
constraint coefficients, modifying the proximal cascade solution value also provides a lower
bound on the monolith solution value.

A Lagrangian cascade provides an optimistic bound for the staircase problems de-
scribed in this chapter. Lagrangian cascades avoid traditional multiplier searches by using
dual information from the proximal cascade. Together, proximal and Lagrangian cascades

offer an alternative to solving a linear program monolith.
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II1. PROXIMAL AND LAGRANGIAN CASCADE HEURISTICS

This chapter serves as a transition between theory and implementation of the proxi-
mal and Lagrangian cascades. Each cascade type is dealt with separately, beginning with a
description and pseudocode. A discussion of cascade parameter selection ensues, followed
by an overview of model characteristics that may allow cascade solutions of good quality.

We use problem B from Chapter II as an example to develop the heuristics. Time
serves as the cascade set for this multi-commodity elastic-demand staircase problem. De-
mand rows (indexed by ) have the null cascade index. Additionally, coefficients (@) may
be negative and rows may represent equalities or inequalities. We assume that staircase

rows are indexed by the greatest time period of any associated column.

A. THE PROXIMAL CASCADE

1. Description

We initialize a proximal cascade with the selection of two parameters: 1) cascade
width, caswid, and 2) cascade overlap, v. For subproblem n, define
firstp™ = (n — 1) - (caswid —v) +1
lastp™ = min [T, (n — 1) - (caswid — v) + caswid ]
forn = {1,..., N} such that lastpV~! < T, lastp™ = T. Using these definitions, the sets
TC™ and TF™ are as defined in Chapter II, Section B.2.

A proximal cascade subproblem consists of active columns and active rows that
have been adjusted for the levels of fixed columns. Fixing a column implies adjusting the
right-hand-sides of all associated active rows for resources consumed, and adjusting the
objective function value by the objective contribution of the column level.

The following rules provide a guide for solving a proximal cascade:
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e Form the first subproblem:

Activate all columns indexed by t € TC"* (production columns, X), plus all
columns indexed only by i where TC* N T; # 0 (elastic columns, F;).

Activate rows indexed by t € T'C? (staircase rows), or i > TC*NT; # 0
(demand rows). In Chapter II’s description of proximal cascades, demand rows
and elastic columns are active in every subproblem; selectively activating these
rows and columns reduces subproblem size without altering the cascade solution.

Solve the subproblem.

o Update the cascade to subproblem n:

Relax active rows indexed by: 1)t ¢ TC™, or2) i > TC" N T; = 0. Fix active
columns that meet either of these two criteria.

Activate rows indexed by ¢ € TC™ ori > TC™ N T; # 0. Activate columns that
meet the same criteria.

Solve the subproblem.

Repeat the cascade update until the final subproblem is solved.
The objective value of the final subproblem is the proximal cascade solution value.
A feasible proximal cascade solution is also feasible to the monolith because all columns

are fixed only after satisfying associated rows.

2. Pseudocode for a Proximal Cascade

We supplement the guide above with pseudocode for a proximal cascade. This code
makes use of the same notation and assumptions as before. Additionally, define a candidate

row or column as one that has never been active.

Procedure Proximal Cascade
INPUT: caswid ,v, monolith LP B
OUTPUT: proximal cascade objective value, proximal cascade solution

upper _bound = 0
lastp=10
n=1
while (lastp < T') {

firstp = (n — 1) - (caswid —v) + 1

lastp = min [T, (n — 1) - (caswid — v) + caswid]

TC = {t: firstp < t < lastp}

if (n>1){

for each active row, {
if ((row indexed by ¢ € T'C) or (row indexed by i > TC N T; = 0)) {
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relax row

}
}

for each active column {
if ((column indexed by t € T'C)) or (column indexed by : 5 TC N'T; = §)) {
add column level - column objective coefficient to upper_bound
for each active row associated with column {
adjust row RHS by subtracting column level - column coefficient
}
record column level
make column inactive

}
}
}

for each candidate row {
if ((row indexed by t € TC™) or (row indexed by i 3 TC NT; # 0)) {
make row active

}

for each candidate column {
if ((column indexed by ¢t € T'C) or (column indexed by i 3 TC' N T; # 0)) {
make column active

}

solve subproblem
n=n+1

}

add final subproblem’s active objective terms to upper_bound
record final subproblem’s active column levels

report upper_bound as the proximal cascade objective value
report recorded column levels as the proximal cascade solution

}

3. Parameter Selection

a. Selection of Cascade Width, caswid

Two considerations often limit cascade width, caswid . The appropriate level
of model myopia dictates a corresponding cascade width. Computational considerations can

also limit cascade width; a few large subproblems take longer to solve than many short ones
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if the cascade overlap is small.

Usually, the proximal cascade solution quality increases as cascade width
increases. Intuitively this is suggested by the fact that selecting caswid = T results in solv-
ing the monolith. However, smaller cascade widths can (counter-intuitively) improve the

proximal cascade solution quality. Consider a 2-commodity, 4-period instance of problem
B:

7B = min Px +Py
s.t.

X +Xo +X3 +X4 +Px =10
Y +Y5 +Y3 +Yy +Py =20
2X: +4Y; <20
2X, +4Y; +10X, +10Y; <20
10X, +10Y, +2X; +10Y; <20
2X; +10Y; +10X, +Y, <20
X1, 0, X, Y,  Xjs Ys Xy, Yo, Px, P 20

il ?

Here, XB = 10, Y2 = 20, ZZ = 0 solves the above (unstated variable

levels are 0 both here and below).

Now consider a proximal cascade solution with caswid = 2, v = 1 (3 sub-

problems):
ZBl = min Px +Py
s.t. X3 +X, +Px =10
Y +Y> +Py =20
2X, +4Y; <20
2X, +4Y; +10X. +10Y; <20
X, 0, Xz, Yo Px, P =0

(note: XB! =10, PE' =20, ZB' = 20),

AL = min Px +Py
s.t.
Xo +X3 +Px =10 — XiBl
+Y, +Ys +Py =20-Y2
10X, +10Y; <20 -2XP - 4Y A1
10X, +10Y; +2X; +10Y; <20

Xo, Yo, X3 Ys; Px, B =20

El

(note: XB! =10, Y22 =2, PP? =18, Z5? =18),and
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ZP% = min Px +F

s.t.

X3 +X4 +Px =10 - XP — X52
+Y; +Y, +Py =20-YP Y22

2X;  +10Y; <20 — 10X52 — 10Y,22

2X3 +10Y; +10X; +Y, <20

X3, Y3, Xy, Yy Px, B 20

(note: YB3 = 20, ZB3 = 0). Thus, the proximal cascade solution is X' = 10, Y;?* =

20, ZB3 = 0, as in the monolith.

However, setting caswid = 3 (and v = 1, resulting in 2 subproblems) pro-

duces a larger objective value:

ZBI' = min PX +Py
s.t. X + X, + X3 +Px =10
Y +Y, +Y3 +Py =20
2X; +41; <20
2X1 +4Y; +10X, +10Y; <20
10X, +10Y, +2X3 +10Y3 <20
X, 0 Xo, Y, X; Ys Px, P 20

’

(note: Y;BY =5, XBV =10, PBY =15, ZBY = 15), and
1 3 Y

ZB% = min Py +PFP

s.t.

X3 +X,4 +Px =10 - XBY — XBv
+Y3 +Y:1 +PY =90 — YlBl' _ Y231’

2X;  +10Y; <20 — 10X5Y — 10Y,2Y

2X3 +10Y; +10Xy +Y; <20

X3, Y3, Xe, Yy Px, P 20

(note: XB? = 25 YpP? = 15, PE¥ = 7.5, Z5% = 7.5). Consequently, this proximal
cascade solution is Y3 = 5, X5? = 2.5, Yf? = 15, PE¥ = 7.5, ZB? = 7.5. Note that
the second subproblem is shortened by the problem’s last period, T'.

Analysis of the above results shows that the caswid = 3 case is “tricked” into
producing commodity Y early in period 1, while the caswid = 2 case avoids this mistake.
Thus, the more myopic cascade has higher solution quality than the less myopic one, in this

instance.
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b. Selection of Cascade Overlap, v

As with the cascade width, selection of the overlap parameter v affects the
quality of the proximal cascade solution significantly. Atone extreme, setting v =caswid —1
tends to produce higher quality solutions, because each subproblem moves forward only one
time period, and re-solves columns of caswid —1 periods. This increases the ability of each
subproblem to respond to new choices and restrictions posed by the added columns and
TOWS.

Large cascade overlaps also preserve more of the optimal basis from sub-
problem to subproblem, so each solve may require fewer pivots if a simplex algorithm is
used. However, even an advanced basis may not overcome the additional computations as-
sociated with large overlaps, so the overall solution time may be longer. Indeed, the results
of the case study confirm this.

At the other extreme, the cascade overlap v may be set equal to the staircase
overlap m. This approach minimizes the number of subproblems, but may lower solution
quality. However, if all non-elastic rows have sense “<” and positive coefficients, feasibil-
ity is ensured by setting v to any value greater than or equal to m. This is shown by noting
that any new staircase row (not previously active) of a subproblem includes columns from at
most m periods prior to the staircase index ¢. By setting v > m, none of these columns are
fixed; hence, all may be set to 0, satisfying the row trivially. On the other hand, if v < m,
infeasibility may result.

Consider the following single commodity elastic-demand staircase problem

with 5 periods and m = 2:

Z* = min p
s.t. X1 +2X2 +X3 +X4 +X5 +P = 10
Xi < 2
X +X < 2
X1 +Xo +X3 < 2
+2Xo, +X5 +X4 < 2
+X3 +Xy +X5 < 2
X, X, Xs, Xs Xs, P > O.
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Here, X} =1, X; =1, X; =2, P*=Z*=5.

Now, consider a proximal cascade with caswid= 3, v=1:

Z' = min P
st. X1 +2X; +X3 +P = 10
X < 2
X1 +Xe < 2
X1 +X: +X3 < 2
Xl, X23 X37 P Z 0
(here, X3 =2, P! = Z! = 6), and
Z%? = min P
st. Xz +X4 +Xs +P = 10— Xll - 2X%
X3 < 2-X{-X;
X3 +X4 < 2-2X} (infeasible)
X3 +Xy +Xs < 2
X3, X4a X5’ P 2> 0.

This subproblem is infeasible since the right-hand-side of the third row is negative. The
example shows that setting the cascade overlap less than the staircase overlap can, in some

cases, result in infeasibility.

4. Desirable Model Characteristics for the Proximal Cascade

There are several model characteristics of the multi-commodity elastic-demand stair-
case problem that significantly affect the quality of the proximal cascade solution, the fore-
most being linkage. Demand and staircase rows with large widths link many time periods,
requiring more rows to be active in multiple subproblems. Since later subproblems do not
communicate these rows’ resource costs to earlier subproblems, the earlier subproblem is
more apt to make decisions that degrade solution quality.

Large staircase overlaps tend to reduce solution quality. Large overlaps result in
more relaxed rows associated with columns of the active index set (at the end of a sub-

problem). Additionally, large overlaps cause more fixed columns from earlier subproblems
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to alter active rows. Either condition increases the opportunity for earlier subproblems to
make decisions that severely affect solutions of subsequent subproblems.
Cascade solution quality can be degraded when the model is formulated without

time-discounted demand penalties. Consider a 2 commodity, 3 time period instance of B:

Z* = min P +P5
st. X1 +P; = 2
Xoo +Xos +P, = 2
X1 < 2
Xun +Xx < 2
Xao +Xo3 < 2
X1, Xoo, Xes, P, P 2 0

This problem has solution Z* = 0, X}; = 2, X33 = 2. Now define proximal cascade

subproblems by letting caswid = 2, and v=1:

Zl = 1nin P1 +P2
s.t. X11 +P1 = 2
Xa2 +P = 2
X < 2
Xn +X2 < 2
Xll) X227 Pla P2 Z 0

One of the alternate optimal solutions to this subproblem is Z* = 2, X3 = 2, P} = 2.
Another optimal solution is Z! = 2, X}, =2, P; =2.

Z2 = min P1 +P2
s.t. P1 = 2- Xlll
Xoo +Xo3 +P, = 2
X22 < 2-Xj
Xap +Xa3 < 2
Xoo, Xo3, P, P 2 0.

Subproblem 2’s solution is monolith-optimal when X{; = 2, but not when X 1, = 0.En-
suring that subproblem 1 chooses X;; = 2 can be accomplished by time-discounting the
penalties. Changing the monolith’s objective coefficient on P, to a value strictly between 0
and 1 would result in the correct prioritization of demand satisfaction by subproblem 1.
Finally, side constraints can reduce solution quality of a multi-commodity, elastic-
demand staircase model that is solved by cascade. Rows associated with columns indexed

by a single period present no difficulty; they are analogous to staircase rows with no over-
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lap. On the other hand, rows that link many periods present a greater challenge, and must
be assessed individually with respect to cascade feasibility. The case study of the next chap-
ter exhibits an example of this challenge. The Air Force model includes a “utilization rate
constraint,” which, in the terminology of this chapter’s example, limits the average utiliza-
tion of production resources over many time periods. It is dealt with by aligning the periods
over which utilization is averaged with the cascade subproblems. Chapter V also addresses

these situations.

B. THE LAGRANGIAN CASCADE

We now describe how to select and solve Lagrangian cascade subproblems from the
monolith. Unlike a proximal cascade subproblem, each Lagrangian cascade subproblem
preserves none of the previous subproblem’s solution; it activates an entirely new set of
rows and columns. However, a Lagrangian cascade is complicated by objective function

coefficient adjustments, demand bounding, and extended constraints.

1. Description

We initialize a Lagrangian cascade by specifying the Lagrangian cascade width,

lwid. For subproblem ¢, define

firstlé = (£ —1) - lwid + 1
lastl® = min [T, £ - lwid)

for £ = {1,..., L} such that last!’™! < T, lastl* = T. The sets TRL* and TO* are as
defined in Chapter II, Section D.1.

Lagrangian cascade subproblems may be solved in any order. The following rules
provide a guide to solving Lagrangian cascade subproblem L

e Activate rows whose associated columns are indexed by i, or by t €T'RL.

e Lagrange-relax rows that are associated with a column indexed by t €TRL* and
another column indexed by t ¢TRL*.

e Activate and Lagrange-relax rows that serve as demand bounding rows or ex-
tended constraint rows (these techniques are discussed in Chapter II). Rows in-
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dexed by i are demand rows; activate (and Lagrange-relax) these rows with sense
“<” if some, but not all associated columns are indexed by ¢t €T RL. Activating
extended constraint rows is more complex; these rows are activated if they have
associated columns that meet criterion 3, described below.

e Activate columns that meet any of these three criteria:

1) the column is indexed by i > T; C TRLE. These columns correspond to
elastic penalty variables for demands that can only be met in this subproblem.
2) the column is indexed by ¢ €T RLE. These columns correspond to those of the
active index set.

3) the column is indexed by ¢ € TO*. These correspond to duplicate columns of
the “extended constraint” rows. Activate these columns with an objective func-
tion coefficient of 0. Activate rows associated with these columns if they are 1)
indexed by t € TRLY, or 2) the corresponding sense is “<”, and all coefficients
are non-negative. These rules preserve the Lagrangian bound. For example, in-
cluding an “equality” row indexed by ¢ € TO* might cause an infeasibility, since
not all columns associated with this row are active.

e Solve the subproblem

The lower bound of a multiple-commodity elastic-demand staircase problem equals
the sum of all Lagrangian cascade subproblem objective function values, plus all Lagrange-
relaxed right-hand-sides multiplied by the associated Lagrange multipliers. The quality of
that bound is dependent on lwid, the proximity of the multipliers used to the monolith-

optimal multipliers, and the structure of the problem.

2. Pseudocode for a Lagrangian Cascade

We supplement the guide above with pseudocode for a Lagrangian cascade. This

code makes use of the same notation and assumptions as the proximal cascade pseudocode

Procedure Lagrangian Cascade
INPUT: lwid, monolith LP B, Lagrange multipliers from the proximal cascade
OUTPUT: Lagrangian cascade objective value
{
lower_bound = 0
lastl =0
£=1
while (lastl < T) {
firstl=(£—1)-lwid+1
lastl = min [T, £ - lwid)
TRL = {t: firstl <t < lastl}
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TO = {t: firstl—m <t < firstl}
for each candidate column {
if (column indexed by ¢ > T; C TRL) {
activate column
activate all rows associated with column

}
if (column indexed by t € TO) {
activate column
change column’s objective coefficient to 0
for each row associated with column {
if ((row’s sense is “ < ”) and (all row’s coefficients > 0)) {
activate row

}
if (row indexed by t € TRL) {
activate row

if ((row indexed by 7) and (row’s sense is “ = 7)) {
activate row
change row’s sense to “<”

}
}

}
if (column indexed by t € TRL) {
activate column
for each row associated with column {
if (row is relaxed) {
add row’s dual multiplier to column’s objective coefficient
if (row not indexed by t > lastl) {
activate row
if (row is not indexed by t) {
change row’s sense to “<”)

}
}

else {
activate row

}
}
}

solve subproblem
add objective value to lower_bound
(=041
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for each relaxed row called row {
add row’s dual multiplier - row’s RHS to lower_bound
}

report lower_bound as the Lagrangian cascade objective value

}

3. Parameter Selection

a. Selection of Lagrangian Cascade Width, lwid

Lagrangian cascade solution quality should tend to improve as lwid increases.
Additionally, knowledge of the problem being solved may be useful when selecting lwid.
Prior insight as to where the dual multipliers have small absolute values may allow selec-
tion of rows that can be relaxed without significantly altering the objective function value.
In an extreme (and unrealistic) case, lwid might be chosen so that all the Lagrange-relaxed
rows have optimal monolith solution multipliers of zero, suggesting that the problem in-
stance is effectively separable. Since prior knowledge of where weak duals occur is not
likely, this topic is not pursued further.

A related issue regards selecting lwid based on the prior selection of caswid
and v. Proximal and Lagrangian cascade subproblems whose time periods roughly coincide
require that multipliers from the beginning and end of a proximal cascade subproblem be
used by the Lagrangian cascade subproblem. Alternatively, choosing lwid so as to avoid
alignment of firstl and firstp exploits the conjecture that the values of the multipliers
may be more likely to resemble the monolith-optimal ones far from the ends of a proximal
cascade subproblem.

As with a proximal cascade, a larger Lagrangian cascade width results in
fewer subproblems and fewer Lagrange-relaxed rows. But, unlike the proximal cascade,
the Lagrangian cascade solution cannot produce a weaker bound when two subproblems
are merged by activating the intervening Lagrange-relaxed rows. Thus, two Lagrangian
cascade subproblems should always be merged if problem size allows. To show this, define

TR C U/TR’ to be a subset of the relaxed periods of the Lagrangian cascade LC given
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in Chapter II. Further, define problem LC’ (with solution value Z*€") to be a Lagrangian
relaxation of the same form as LC but with only the staircase periods for ¢t € TR’ Lagrange-

relaxed. Then, the following relationship holds between the solutions of LC’, LC, and B :

Theorem 3.1 ZB > zLC' > 7LC,

Proof: The left-hand inequality is immediate by the theorem of weak Lagrangian duality.
The right-hand inequality also follows using weak Lagrangian duality, as
well as the relationship TR’ C U, T R*:

ZX = min Y hP,

icl
+2 0 (di - Xa— Pi)
i€l teT;
+ 2 Bils— DY a‘itt’Xit’)
teTR' i€l ¥eTNTS:
s.t. Z E a,-wX,;tr S S¢ vt ¢ TRI

i€l t'€TiNT St
Xa,BbL>20Viel,teT

> min E hiP;
i€l
+Zai (di - Z Xit — Pz)
iel teT;
+ 2 B (St -2 2 aitt’Xit’)
te(UgTRE) i€l t'eT;NT'Se
s.t. Z Z am/Xit/ S St Vi ¢ UeTRe
el t'eT;NTS:
X, b>0Viel teT
ZLe,

d

Thus, combining Lagrangian cascade subproblems cannot reduce solution
quality. Moreover, combining subproblems results in fewer relaxed rows, so solution quality

should usually improve.
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b. Selection of Dual Multipliers

The similarity of the Lagrange-relaxed row penalties to the monolith’s op-
timal dual multipliers is key to the quality of a Lagrangian cascade objective value. This
similarity is a function of 1) the overall quality of the corresponding proximal cascade, 2)
which proximal cascade subproblem is chosen to provide the multipliers, and 3) the ap-
propriateness of any modifications made to the multipliers. Improving the quality of the
proximal cascade is discussed earlier. In this section we discuss how to choose the best, or
best combination of subproblems from which to select multipliers. We also discuss what
modifications to these multipliers might improve the Lagrangian bound.

We offer two methods for selecting the proximal cascade subproblem from
which a Lagrangian multiplier is chosen. The finalper method chooses the multiplier
associated with the last subproblem in which the corresponding row is active. For example,
a demand row associated with columns indexed by periods 5 through 25 may be active
in numerous subproblems. Selecting the last subproblem in which period 25 is active may
give the best representation of the difficulty required to satisfy that particular demand. Since
earlier subproblems include only a limited number of time periods to meet the demand, the
Lagrange multiplier may reflect an exaggerated marginal cost of constraint satisfaction.

A more promising technique of multiplier selection averages the dual mul-
tipliers from all subproblems in which a row is active, weighted by the number of periods
active in that row. This strategy allows the dual variable to reflect a temporal sampling
of the resource costs involved in satisfying that constraint. This method, avgper, provides
better bounds in the case study, and is used throughout.

A potential difficulty of multiplier selection involves the situation where
finalper or avgper computes a penalty for a Lagrange-relaxed demand row that is zero
or close to zero. The resulting incentive for a Lagrangian cascade to satisfy demand is
negligible—an unlikely situation if the optimal multiplier is used. This discrepancy is re-
dressed by employing a pair of heuristic parameters, minfrac and mdmin. minfrac specifies
a threshold fraction for a demand row multiplier, mdmin specifies the modified amount. If

any demand row multiplier is less than minfrac multiplied by the average of the demand
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multipliers, its value is reset to mdmin times that average. This technique is used throughout

the case study.

4. Desirable Model Characteristics for the Lagrangian Cascade

Model characteristics that affect the solution quality of a proximal cascade can be
expected to have a similar affect on the solution quality of a Lagrangian cascade. Minimiz-
ing the number of Lagrange-relaxed rows is paramount; hence, smaller staircase overlaps
should be better. Small row widths also reduce the number of relaxations. Finally, models
that include any side constraints whose columns force a relaxation (by being active in more

than one subproblem) may often reduce the solution quality of a Lagrangian cascade.

C. SUMMARY

This chapter details the proximal and Lagrangian cascade heuristics using a sim-
ple model structure, the multi-commodity elastic-demand staircase linear program. These
methods must be implemented on a complex model to be of real use. Consequently, the
next chapter is devoted to applying the cascades to the problem motivating the dissertation,

namely, the Air Force mobility problem as modelled by the NPS/RAND Mobility Optimizer.
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IV, THE NPS/RAND MOBILITY OPTIMIZER

A. INTRODUCTION

The NPS / RAND Mobility Optimizer NRMO) is under development as an alter-
native and compliment to simulation for USAF strategic airlift analysis. Designed in the
summer of 1996, it is the consolidation of mobility optimization models from NPS [Mor-
ton, Rosenthal, and Lim, 1995] and RAND [Killingsworth and Melody, 1994]. The project’s
sponsor is the USAF Studies and Analyses Agency, Global Mobility Branch.

Strategic airlift is defined as: “...the movement of units, personnel and material in
support of all Department of Defense agencies between the continental United States and
overseas areas” [US Air Force, 1992, p. 301]. Although this definition embodies many
missions, a primary goal of strategic airlift is to maximize the on-time delivery of combat
and support forces to any foreign region specified by the national command authorities.
NRMO represents strategic airlift as a multi-period, multi-commodity network-based LP
with a large number of side constraints. A model instance provides insight into mobility
issues such as aircraft fleet and infrastructure adequacy, as well as the identification of
system bottlenecks. Multiple scenarios may be used to address questions of fleet selection
and airfield improvements.

There are four primary input requirements of the NRMO LP: 1) the required cargo
and passenger movements as delineated by the Time Phased Force Deployment Document
(TPFDD), a widely used planning database, 2) the types and numbers of available aircraft
and crews, 3) the usable airfields, and 4) the allowable routes for each aircraft type. The LP
minimizes the weighted sum of late and undelivered cargo penalties, subject to restrictions
such as aircraft flow balance, aircraft payload, and airfield capacity. The solution speci-
fies the airlift mission assignments by requirement moved, aircraft and route flown, and
time delivered. From this output, information such as unit closure (the time when all of a

unit’s cargo and passengers have been delivered) may be computed. Return routings and
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airfield saturation levels are also given in the LP solution, as well as the marginal values of
resources

in addition to the four primary inputs, other data allow NRMO to model aerial re-
fueling, geographic crew movement, and intra-theater airlift. If directed by the scenario
input, NRMO can assign dual-role aircraft as either airlifters or aerial refueling tankers, and
reassign them as the contingency warrants. The movement of crews can be modelled geo-
graphically by balancing their flow through selected rest bases, and observing overall limits
on their number. Finally, NRMO allows intra-theater activity by alternating selected aircraft
between tactical and strategic roles, again as the contingency warrants.

NRMO is a very complex example of a multi-commodity, elastic demand-staircase
model. With some modifications and additional assumptions, it provides a good case study
for cascades. This chapter develops the case study by presenting the model, and then states
the proximal and Lagrangian cascade formulations. The monolith formulation of NRMO
follows [Rosenthal et al. 1997].

B. NRMO FORMULATION

1. Explanation of Terms and Acronyms

The following is a list of terms and acronyms used by the NRMO formulation. As

necessary, these terms are explained in greater detail throughout the formulation.

acft aircraft

APOD Aerial Port of Debarkation

APOE Aerial Port of Embarkation

AR Aerial Refueling

backchannel returning an empty aircraft from an APOD to an APOE
bed down resting location of tanker or intra-theater aircraft

cargo types:  bulk - palletized
oversize - typically vehicles
outsize - typically tanks or helicopters
pax - passengers

chop assignment of aircraft to an intra-theater role
CONUS Continental United States
CRAF Civil Reserve Air Fleet, airliners contracted for military service
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crew stage  location where aircraft get a fresh aircrew

divert
FOB

line id
MOG

quick turn
recovery

RON
ston
shuttle

routing of an intended AR mission that failed

Forward Operating Base

delivery requirement

Maximum On Ground, an airfield’s capacity

unloading an aircraft in theater without servicing
eventual servicing location of a quick turn mission
Remain Over Night

short ton (2000 1bs.), as opposed to metric ton (1000 kg.)
intra-theater mission

super node  an aggregation of APODS to reduce the number of variables
tanker cloud modeling construct to reduce the number of variables

theater
ute

TW;

FT

Lo
I apd
Iy st
I btrn
I b,sup

region of the world where the deliveries occur
utilization

Sets

time periods

delivery time window for line id

a set of time periods over which an aircraft’s flying hours are limited

flow time periods f = {1,..., maximum mission time }, used for flight times

the set of time blocks that limit an aircraft’s flying hours

line ids

subset of line ids whose destination is a FOB

subset of line ids whose destination is an APOD.

subset of line ids that have base b (FOB or APOD) as a destination
subset of line ids that have APOD b as a transshipment node
subset of line ids that use super node b

cargo types {bulk, over, out, pax}
cargo types {bulk, over, out}
subset of cargo types that can be carried by acft a

set of acft types

subset of acft types that can carry cargo type c

subset of acft types that can carry paz and at least one other
cargo type (bulk, over, or out)

subset of acft that can carry passengers

subset of tanker acft types

subset of acft that can be refueled by a tanker

subset of acft that can be “chopped”, i.e., assigned to the theater
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RD

RB
RBrec
RD,
RD ia,dir
RD a,trn
RBg
RD b,div
RBy giv
Rb,ori
Rb,dst

3.

set of all “bases” (APOE, APOD, FOB, super, enroute, waypoint,
bed down, and aerial refueling points)

subset of bases that are super nodes

subset of bases that are FOBs

subset of bases that are embarkation nodes

subset of bases that are AR points

subset of bases that are bed-down bases for tankers

set of super nodes that have at least one recovery base

set of bases that are enroute navigational waypoints

set of super nodes that have b as the shuttle bed-down node

set of FOB’s that call b their super node plus the super node itself
subset of B, that are served by b € Bixr

subset of By, that serve b € Bgrp

crew stage bases

routes

delivery routes

backchannel routes

subset of backchannel routes that include a recovery base

delivery routes that use base b (terminal node is a super, not FOB or APOD)
subset of routes that can be flown by a and carry ¢ for direct delivery
subset of routes that can be flown by a and carry 4 for transshipment
subset of backchannel routes that use b and can be flown by a

set of delivery routes that have b as a divert base

set of backchannel routes that have b as a divert base

routes whose origin is base b

routes whose destination is base b

Data

Mission time data

Tt Vor
irvgr
retrvgp,
etrvgy,
mazxirv,

total travel time for acft a to travel on route r (periods)

rounded rtrv,, (integer periods)

travel time for acft a to reach base b when flying route r (periods)
rounded retrvg, (integer periods)

maximum total travel time along any route for acft a (integer periods)

msntimeg s time flown f periods into a mission (hrs)

e hrsper if rtrv,, > f (mission continues throughout fth period)
o 0if rtrvg, < f — 1 (mission teminates before fth period)

o hrsper - (rtrvg, — (f — 1)) if f — 1 < rtrve, < f

(mission terminates during f’th period)
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Vg
tkrtimegpy
tkrrateqgy

shutrateq; -

sgtimegp
gtrv;
shuttime;,
flttimeg, s

gtimegpy
gtimegp,

CtTVapr
cttrvgp
dht?"l}blb
TEtrvgp

Aircraft data
newacy:
CUMaCqt
crewrat,

PUTECAD;ac

maxpaz,
pazfrac,
rangefacia,
restrew,

usepen,
dhpen,
tkrequsapr

tkrpropapy
dpct,

urate,
initchopg

rounded rttrvg,, (integer periods)

in-flight time for tanker a flying from b to & and back (hrs)
maximum number of tanker shuttles to AR point &' per period
for tanker a when it is bedded at b

maximum number of in-theater shuttles per aircraft per period
ground time for shuttle aircraft a at base b (hrs)

in-theater ground travel time for ¢ (periods)

in-flight shuttle time (hrs)

same as m.sntime,s, but only includes flying time

thus, flttime,r; < msntimeq,s, since all missions

have some ground time

ground time for aircraft a at base b when flying route  (hrs)
offload time only for acft a at base b when flying route r

with recovery used (hrs)

travel time to b, plus crew rest, for a along r (integer periods)
ttrvg, plus crew rest (integer periods)

travel time for deadheading crew from ¥’ to b (integer periods)
tanker a reposition time (approx 2 days) from embarkation

or bed-down base b to cloud (integer periods)

number of new acft of type a available in period ¢

= ) y<s NEWACay

ratio of available crews to acft a

number of stons of unit ¢’s cargo of type c that can be loaded on acft a
for a 3200nm flight

maximum number of paz that can be loaded on an acft of type a
fraction of an acft’s capacity that can be loaded with pax

fraction of acft available for loading when flying route r for line id ¢
unit reward for resting acft a at base b € B,

(max;.{purecapis.} - latepen; - 0.01)

usage penalty for theater aircraft and tanker reassignments

penalty for deadheading crews

amount of a full tanker consumed by acft a refueling at AR b

on r (KC10 equiv)

proportion of a full tanker (KC10 equiv) available when a is a refueler
at AR base ¥’ and is bedded at b

fraction of AR attempts by receiving acft a that fail

number of hours per day that aircraft a can fly

initial acft chopped to theater
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Movement requirements data

rdd; required delivery date

dem;, stons of demand for line id 7 of type ¢

latepen; late penalty (delivered after rdd;) for i per day per ston

mazlate; maximum number of time periods late a delivery for line id ¢ can arrive

nogopen; non-delivery penalty per ston (> latepen; - mazlate;)
Other data and notational conventions

hrsper number of hours per period

acpkgap unit mog consumption of aircraft a at base b
mogeffy mog efficiency at b

mogy airfield capacity: service spot hours per period at b
I(-) 1 if argument is true; 0 otherwise.

(z)* = max{0, z}

S complement of a set S

\ set difference, i.e., S\T = SNT

In general, constraints and variables are assumed to exist
only for the appropriate combinations of their indices

4, Decision Variables

Aircraft mission variables

X D;ors # of aircraft a direct delivering i on route r departing at time ¢

XTiort # of aircraft a delivering a transshipment load (from APOE to a
transshipment APOD) of 5 on route r departing at time ¢

XDRigrt # of aircraft a direct delivering i on quick turn route r departing at time ¢

XTRipm # of aircraft a delivering a transshipment load of i on quick turn route r
departing at time t. The load is shuttled after transshippment,

X Siat # of (round trip) shuttle missions of type acft a delivering ¢ in t

Yart # of aircraft a recovering on route r departing at ¢

TKRA vt # of tanker sorties of type a flown from b € By to b € Bgrpint
Aircraft inventory variables

RONgy: number (#) of acft of type a Remaining Over Night at b € B.int
RONTy # of acft of type a “RONing” without recovery in ¢

RON R # of acft of type a “RONing” with recovery in¢

IRONT, # of acft of type a initially assigned to b (non-recovery)
IRONRg, # of acft of type a initially assigned to b (recovery)

THCHOP,u # of acft assigned to super b’s shuttle fleet from non-recovery routes int
THCHOPR,,; # of acft assigned to super b’s shuttle fleet from recovery routes int
TKRBayt # of tankers a whose bed-down base is b € By, in t
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Aircraft changing roles

ALLOC

TKRECgy
TKRCE
TKRBCoap
TKRC By

Cargo
DTON S;act

TTON S;qct
STON S;act
GTON S

NOGO,,
Crews
SCREW Sgut

DHCREW Sayut

# of new acft a allocatedto b € B, int

# of tankers a leaving b € B, in t for service as a refueler (for cloud)
# of tankers a leaving tanker fleet (cloud) in ¢

for b € B, for cargo hauling

# of tankers a leaving b € By, int

for reassignment or service as a cargo hauler

# of tankers a being reassigned (from cloud) in ¢ to

b € By, for refueling

stons of i’s cargo of type c direct delivered by a that will arrive in .

stons of i’s cargo of type c for transshipment by a arriving at (the
transshipment node) in ¢

stons of i’s cargo of type ¢ shuttled by ain ¢

stons of #’s cargo of type ¢ ground that will arrive at the FOB in ¢
Note: when indexed by “paz,” DTONS, TTONS, STONS,
and GTON S represents number, not stons, of pax.

stons of 4’s cargo of type ¢ not delivered

# of strategic airlift crews available (rested) for a at b € Berw
at the beginning of time ¢

# of deadheading crews for a leaving ' at time ¢

for reassignment to b
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S. Formulation

OBJ: Objective function

minimize

Z Z Z Z latepen; - (t — rdd¢)+ - DTONS;qct

i€l a€A ceC,, teTW;

+ Z Z Z Z latepen; - (t — rdd;)™ - STON Siget

i€l s0b a€A ceCy teTW;

+ Z Z Z latepen; - (t — rdd;)" - GTON Sict

1€l50p ceC teTW;

+ Z Z nogopen; - NOGO;.

i€l ceC

+ 3 3 usepen, - [THCHOPuy + THCHOPRay]

aeAchp be Bsup tGT

+ Z Z Zusepena .TKREC 4 + Z Z Zusepena - TKRBCoyt

a€A;x, bEB. teT a€Agkr bEBikr t€T
— E E E restrew, - RONgt + E E E dhpeng - DHC REWgpyt
a€A beB, teT a€A bV EBerw tET

Minimize the sum of: 1) late penalty - number of days late - late cargo delivered di-
rectly to the line id’s destination; 2) late penalty - number of days late - late cargo shuttled
(from the transshipment base) to the line id’s destination; 3) late penalty - number of days
late - late cargo delivered by ground from the transshipment base; 4) nondelivery penalty -
undelivered cargo; 5) usage penalty - number of chopped aircraft or reassigned tankers; 6)
a small reward (negative penalty) - number of aircraft remaining overnight at an APOE (of-
ten CONUS, and thereby near home station); and 7) crew deadhead penalty - deadheading

CIews.
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ACBALE: aircraft balance at embarkation nodes

Z Z X Tiart + Z Z XD iart

€15 r€RDyNRD;a trn i€l reRDyNRD;q dir

Z Z XTR,iart + Z Z XDRia'rt

iGIfob r€RDyNRD;q trn i€l réRDyNRD;, dir

+I(a € Atkr) ° [TKRECabt] + RONabt = RONabt——l + Z Ya.rt-trva,-
r€RBgy

+ALLOCau + I(a € Atky) - [TKRCEqy) . VYac€AbeB,teT

AirCraft BALance at apoE’s: For each aircraft type, APOE, and time period (day);
departing transshipment missions + departing direct delivery missions + assignments to
tanker duty (if aircraft is a tanker) + overnight resting aircraft = resting aircraft from yester-
day + arriving backchannel missions + newly assigned aircraft + reassignments from tanker
duty (if aircraft is a tanker). Note that direct delivery missions and transshipment missions
can be selected to recover away from the APOD (X DR, XT R) or recover at the APOD
(XD, XT) missions. This is true throughout the formulation, except as noted.

ACBALSUP: aircraft balance at SUPER debarkation nodes

> Yuu+ RONTu+THCHOPuy =

reRBaban?nc
5 E X sz'art—trv,,, + E 5 X D iart—trvg,
‘iEIfob r€RD,NRD;q trn i€l TERDbﬂRD,'a,di,-

+RONT 41 + THCHOPp—1 + I(t = 1) - IRONT, Va € A,b € Bgyp,t €T

AirCraft BALance at SUPer’s: A “super” node is a surrogate for all bases in the
theater. Flow balance is done with supers, but MOG is constrained at the actual theater
APODs and FOBs. Additionally, this constraint only addresses missions that recover at the
APOD. Other missions are constrained in ACBALREC. For each aircraft type, super, and
time period, the departing backchannel missions + overnight resting aircraft + total aircraft

chopped to the theater = arriving transshipment missions + arriving direct delivery missions
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(for those line ids whose destination is an APOD) + last night’s resting aircraft + yesterday’s

total of chopped aircraft + the initial “chops” to theater (if it is the first time period).

ACBALREC: aircraft balance at SUPER debarkation nodes with recovery

>~ Yari+ RONRuy + THCHOPRa =

r€RBgpNRBrec
E E X TR»ia.rt—trvar + E E XD I?’iart—t'rvar
iGIfob Tr€RDyNRD;a,trn el rGRDbnRD,»Mi,

+RONRyy 1+ THCHOPRuyy 1+ I(t =1)- IRONRyy  Va € Ab € BSpec,t €T

AirCraft BALance at supers using RECovery routes: Same as ACBALSUE but

balances flow for missions not recovering at the APOD.

INITIRON: allocate initial theater assignments

IRONTy, + IRON Ry = initchopy, Va € Acip,b € Boup

INITIal RONSs in theater: For period 1 and all aircraft and supers; the sum of RONS
at APOD recoveries plus the RONS at non-APOD recoveries equals the initial aircraft

chopped to theater.

ACALLOC: allocate newly available aircraft

Z ALLOC,4 = newacys Va€ At €T
beBe

AirCraft ALLOCation: For each aircraft type and time period; the sum of all new

allocations to APOE’s = the amount newly available.
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SHUTLBND: don’t send more shuttles than available

X Sia.
> 2 < [THCHOPu +THCHOPRu)] Va€ Ab€ Byup,t€T
T shutrate,;

SHUTtLe BouND: For each aircraft type, “super” APOD, and time period; the num-
ber of round trip shuttle missions divided by the daily number of round trip missions per

aircraft < the total chopped aircraft in the theater.

TKRBND: don’t use more tankers than available

z TKRAabt

tkrrate
b'€BAp,tkr abl/

<TKRBy: Va € Aur,b € Byr,t €T

TanKeR BouND: For all tankers, tanker bed down bases, and time periods: the
number of AR sorties flown to all tracks divided by the daily sortie rate < tankers assigned

to the bed down base.

CLOUDBAL: flow balance: leaving and entering tanker fleet

Z TKRECa,bt—tt'rvab + z TKRBCa.bt—ttrvab =

beB. b€ Bk
> TKRCEuw+ Y, TKRCBu Va € Aur,t €T
beB. bEBir

tanker CLOUD BALance: The “tanker cloud” is a node at which, as a modeling
convenience, we assume role changes take place for multi-role aircraft that can be tankers
or airlifters. The “cloud” serves as a control point that reduces the number of required
assignment and de-assignment variables. For all tanker aircraft types and time periods:
newly assigned tankers from all APOEs (adjusted for travel time) + newly de-assigned
tankers from all tanker bed down bases (also adjusted for travel time) = tankers returning to
all APOEs + tankers deploying to all bed down bases. Note that de-assigning a tanker from

65



a bed down base does not force it back to an APOE; it could be re-assigned to another bed

down base.

TKRINVT: tanker inventory at tanker bed-downs

TKRBC.y; + TKRBay = TKRCBuy + TKRBay-1 Va € Agkr,b € Byr, T € T

TanKeR INVenTory: For all tanker aircraft types, tanker bed down bases, and time
periods; newly de-assigned tankers + total tankers assigned = newly assigned tankers + total
tankers assigned from last period.

ARMOG: aerial refueling capacity constraint

Z Z Z tkrequab’r : XD‘ia’r‘t—-etr'uab,.

i€l a€Am r€RDyNRD;q dir

+ Z Z Z tkrequabr . X:riart—etrvabr

1194 G-EArﬂ TERDbnRDia,tr'n

z Z Z tkrequsasr + X D Riart—etrvgs,

i€l a€A.n r€RDyNRD;q,dir

+ E Z Z tkrequabr - X TRia‘rt—etr'vab,-

el aEA,.ﬂ TERDbﬂRDia,trn

+ z Z tkrequabr . Ya'rt'—etrvabr

a.GA,.ﬂ r€RBgyp

< Z Z tkrpropays - TK RAabt Vb € Barp,t € T

Y E€BTh arp A€ Askr

Air Refueling MOG: Despite the apparent contradiction of terms, this constraint is
the air refueling analog to airfield MOG — it constrains the capacity of an AR track. For
all air refueling points and time periods; the fuel required by direct delivery, transshipment,
and backchannel missions hitting the track in this time period < the amount of fuel available

from tanker sorties flown to the track.
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UTE: utilization rate

z Z Z Z flttimea,.f . X-Diart—-(f—l)

teTy 1€l TGRDia’dir feFrFT

+ Z Z Z Z flttimeg, s - Xﬂart—(f—l)

teTy 'iGI_fob TGRDia,gru feFT

+ Z 2 Z Z flttimegrf - XDRigrt—(5-1)

teTy i€l TERDia,dir fEFT

+Z Z Z Z flttimears - XT Rigre—(5-1)

teT, iEIfob TGRD{,G,:T" feFrT

+ 373 shuttimeis - XS+ Y, > D flttimears - Yore—(s-1)

iGIfob teTy teT, reRBy fEFT

+ [ a e Atkr Z Z Ztkrtzmeaw TKRAzwt

beng_r b’ EBarp teTu

+ Z Z hrsper - rttrvg, - TK REC

bEB t€Ty,

+ Z Z hrsper - rttrug, - TK RBCy:

bEBykr t€T

< Z cumacy: - urate, Vae A,ueU
teTy

UTilization ratE: Sums all varieties of flight time, so the left-hand-side parameters
of this constraint accumulates flight time only of missions operating during blocks of UTE
rate enforcement. The utilization rate blocks B in NRMO are defined arbitrarily. They are
motivated by the fact that over a period of several weeks, an aircraft can historically fly an
ill defined average amount of time. Thus, UTE rate blocks are generally between 20 and
30 days.

For each aircraft type and UTE rate block; the flight time of all direct, transshipment,
shuttle, and backchannel missions (as well as deployed and deploying tankers, if appropri-
ate) < total aircraft hours available - maximum hours per day of average aircraft utilization.
The f index corresponds to the number of days into a mission, so when f =1, a typical

term is the flight time of a mission’s first day times the number of missions (of that type)
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launched that day. Similarly, when f = 2, a typical term corresponds to the flight time ofa
mission’s second day times the number of missions (of that type) launched on the previous

day.

ACCONSUME: max acft usage to lessen rounding effects

Z Z Z msntimeg,f - X Diart—(5-1)

i€l r€RD;o dir fEFT

+ Z Z z msntimears - X Tiart—(f-1)

iGIfob T€RD;q, trn feFT

Z Z Z msntimegrs - X DRigri—(-1)

i€l r€RD;q gir fEFT

+ Z Z Z msntimegrs + XT Rigrt—(f-1)

1€I5p TERDia, trn feFT

hrsper
+ E —_— . XS5 E E msntim. Yot (51—
- shutratem- iat + €arf art—{f—1)
i€lsob r€RB feFT

+I(a € Atk:r) . Z Z hrsper -TKRAwv:

thrrateqy
b€ Byir 'EBarp ab!

+ Z rttrvg - hrsper - TK RECq
bEB.

=+ Z rttrug - hrsper - TK RBCqt
bEBtkr
+ Z hrsper - RONgp + Z hrsper - [RONTy: + RON Ryt
beB. b€Bsup
< hrsper - cumacat Vae A,teT

AirCraft CONSUMEd: Structurally similar to UTE, this constraint reduces the ef-
fect of time discretization. It supplements the flow balance constraints, which may deal
with short missions whose rounded duration is 0 periods. For all aircraft types and time pe-
riods; mission time of all direct, transshipment, shuttle, and backchannel missions (as well
as deployed and deploying tankers, if appropriate) plus resting aircraft < total aircraft hours

available.
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DCAPACITY: aircraft capacity for direct delivery

Z DTONSiact + pamff‘aca . DTONSi,a,paz,t

el PUTeCapiac MaTPaz,

I{a € Apaz)

r€RD;q,air

< Z Tangefaciar ) [X-Diart—tr'vm- + XDRia’rt—tr'uar] Vi € I) ae A, te TVVz

Direct delivery mission CAPACITY: For each line id, aircraft type, and time period;
the number of tons delivered (summed over cargo classes) divided by the aircraft capacity
by cargo type and unit + the passengers delivered divided by the passenger capacity < the
number of missions launched in support of 7 by aircraft of type a along any route, launched
long enough ago so as to be arriving at time t. pazfrac specifies the portion of the aircraft
filled if fully loaded with passengers. Parameter rangefac is frequently 1, but is reduced if

a leg of route r is long enough to exceed the aircraft’s range-payload performance.

TCAPACITY: aircraft capacity for transshipments

Z TTON S;ect N pazfrace - TTONS; o paz,t .

I(a € Apaz)
welioe PUT€CaPiac MaTPate

< Z rangefaciar : [XT:ia.rt—tr'uar + XTRiart—trvar] Vi € Ifoba ac A,t € TVVz

TeRDia,trn

Transshipment mission CAPACITY: Same as DCAPACITY, but applies to missions
flown in support of cargo and pax deliveries to transshipment APODs (for subsequent trans-

shipment).

SCAPACITY: aircraft capacity for shuttle deliveries

STON S;act + pazfracy - STONS; 4 paz.t

PUTECADiac MaTpat,

-I(a € Apaz)
ceC.NCC

< srangeiq + X Siat Vi € Iipya € At € TW;
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Shuttle mission CAPACITY: Same as DCAPACITY and SCAPACITY, but applies

to intra-theater missions moving cargo from transshipment APODs to FOB:s.

DPAXCAP: aircraft capacity for direct delivery of pax

DTONSi,a,paz,t S

Z marpar, - [XDiart—trvar + XD-R/iart—tr'uar] Vi € I, ac€ Ami:ca te TVVz
T1€RD;q dir

Direct delivery mission PAX CAPacity: For each line id, aircraft type, and time
period; the number of pax moved must not exceed the maximum pax per mission - number
of missions flown. It supplements DCAPACITY, which would (by itself) allow the aircraft
to be fully loaded with pax, despite available seating configurations.

TPAXCAP: aircraft capacity for transshipment of pax

TTONS, g pazt <

Z maxrpal, [X Tiart—tr'uar + X TRiart—trvar] Vi € Ifob, a€ Amiz’t € TW/'I.
TERDia,trn

Transshipment mission PAX CAPacity: Same as DPAXCAE, but applies to trans-

shipment missions.

SPAXCAP: aircraft capacity for delivery of pax by shuttles

STONS,; o pazt < MATPAT4 - X Sigt Vi € Lop, 0 € Amiz,t € TW;

Shuttle mission PAX CAPacity: Same as DPAXCAP and TPAXCARB but applies to

intra-theater shuttle missions.
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MEETDEM: meet demand for each line id

> " DTONSieq + NOGO;

aeAc tETWi

+1G€Lw) |Y. Y STONSua+ ), GTONS| =dem Vi€l,ceC

a€A. teTW; teTW;

MEET DEMand: For each line id and cargo class; direct delivery tons (and pax)
moved by all aircraft over the available time window + tons moved by shuttle missions (if

destination is a FOB) + tons moved by ground (if destination is a FOB) + cargo NOT moved

= demand by unit and cargo class.

TRANSTONS: flow balance for transshipped stons

3" TTONSiaes = STON Sige

acAc a€A.

+GTON Sictrgtrs; - It + gtrv, € TW;) Vi € Ipp,c € C,t € TW;

TRANSshipment TONS: For each line id, cargo class and time period; Transship-
ment tons moved from APOE to transshipment APOD by strategic airlift = tons moved from
transshipment APOD to FOB by shuttle or ground transport.

INITCREWS: initialize crew placement

Z SCREW Sq + crewrat, - Z TK RB g

bEBerw bEBikr

= crewrat, - NeWacyt Va,t =1

INITialize CREWS: For all aircraft and time period 1; strategic airlift crews avail-

able at all crew stage bases + crew contingent for all pre-deployed tankers = number of

crews available.
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SCREWBAL.: strategic crew balance of flow

SCREWSabH.]_ . SCREWSabt
+ Z Z [X D tart—ctrvgyy + -X -D R/ia'rt—ctr'vab,]

iel reRDia,diran,ori

+ Z Z [Xﬂart—ctrvabr + X TRiaTt—ctrvab,.]

i€lsop TERDiu,tr‘nnﬁb.ori

+ E Y:zrt—ctrvab,

TGRBanyoﬂ'

- Z Z [X -Dz'art-et'rvab, +XD R'ia'l‘t—et'f'vabr]

1€ r€RD;q 4irNRp dst

— Z Z [X T:ia.rt—etrvabr +X TRfiart—etrvabr]

i€l fob r€RDig trn MR, dst

- E Yf:zrt—etrvabr

TERBan'dst
+I(b € B.) - crewrat, - [T K RCEopt—cttrv,, — TK REC ]

+I(b € Bayp)-

crewraty - [THCHOPy—1 — THCHOPy + I(t = 1) - IRONT, )
+I(b € BSyec):

crewraty - [THCHOPRgp—1 — THCHOPRgy + I(t = 1) - IRONR,})
+I(b € Be,t # 1,newacq > 0) - crewrat, - ALLOC g

+ > DHCREWaysi-dnray, = » , DHCREWom

b €Berw Y E€Berw
Va,b € Bow, Vt: (t€T,t < |T))

Strategic CREW BALance: For all aircraft, crew stage bases, and time periods; the
number of crews available tomorrow = the number of crews available today + crews coming
out of crew rest from previous direct, transshipment, and backchannel missions - crews
required for departing direct, transshipment, and backchannel missions + the net crews made
available from tanker deployments and returns (if APOE and tanker aircraft) + the net crews
made available from “chopped” and “unchopped” aircraft (if “super” APOD) + new crew
allocations + arriving deadhead crews from other bases - deadhead crews departing for other

bases.
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MOG: airfield capacity

Z Z Z gtimeab‘r : acpkgab ’ [X Dz’art—-etrvab, + XD Riart—etrvab,]

i€l a€AT€RDyNRD;q dir

+ Z Z Z gtimegpr - acPkgap - X Diart—trvg,

ier,dst acA TeRDia,dir

+ Z Z Z qtz’meab, . acpkgab - XD Rfiart—trvar

1€lp ast a€A r€RD;, gir

+ Z Z Z gtimegpy * acpkgas - [X T;art-etr'uab, +X TRiart—etrvab,]

i€l a€A r€RDyNRD;qg, trn

+ Z Z Z gtimeapr - acpkgap - X Tiart—trvg,

1€y trn AEA TE€ERDiq trn

+ Z Z Z gtimegpr - acpkgap - X1 Riart—trve,

i€y trn €A TE€ERDig trn

+ Z Z sgtimegy - acpkgap - X Siat

iG(Ib,dstnI_fob)UIb,trn a€A

+ Z Z hrsper - acpkgay - [THCHOPFwy + THCH OPRuy+)

b’EBsumeSb,dwn acA

+ Z E gtimeab,. . acpkga,b . Ya'rt—etrvab,
acA r€RBg;

+I(b € Bigr) - Z hrsper - acpkgap - T K RBopt

a€Atkr

+> Ny > dpct, - gtimeas: - acPkgas - X Diart—etrvgr
i€l a€Amp r€RDg 4iyNRD;q gir

+ Z Z Z deta ' gtimeabr : acpkga.b : XDRriart—etr'vu;,,.
i€l a€Apn r€RD4 divNRDiq, dir

+ Z Z Z deta * gtimeab'r ) acpkgab . Xﬂa’rt—et’rvab,
el aGA,.ﬂ TGRDb,diunRDia,trn

+ Z Z Z dpct, - gtimegpr - acpkgab : XTRiart—etrvabr

i€] a€Ap r€RD4 givNRDia trn

+ Z Z dpct, - gtimegpr - acpkgab - Yart—etrvas,
a€Arn TERBy, div

S mogp * mogeffb Vb € B \ Bsup \ Barp\ B‘wayv t€ T
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Maximum On Ground: For all bases (except super APODs, AR points, and way-
points) and time periods; the aircraft parking required for transiting and terminating direct
delivery missions + parking for transiting and terminating transshipment missions + shuttle
mission parking (if FOB or transshipment APOD) + chopped aircraft bed down parking Gf
shuttle bed down base) + backchannel mission parking — parking saved at offload base by
using recovery backchannel routes (no fuel or maintenance at offload) + tanker bed down
parking (if tanker bed down base) + divert base parking for failed refuelings of direct de-
livery, transshipment, and backchannel missions < available MOG - MOG efficiency.

Non-negativity of all variables.

C. NRMO BY PROXIMAL CASCADE

Much of the NRMO formulation is well suited to a proximal cascade. Depending on
the scenario and which features of the airlift system are modelled, the maximum staircase
overlap m varies between one and three periods. Travel times for the various missions
(accounted for by subtracting the appropriate number of periods from the corresponding
variables’ subscripts) determine the overlap. Ifall features are modelled, the maximum crew
travel time lag in the SCREW B AL constraint, maXasr [ct7var) + 1, usually determines the
maximum staircase overlap. If crews are not modeled, either the maximum mission travel
time, max,, [trvqr] , or the maximum tanker reposition time max [ttrve,) specifies m. The
elastic demand constraint delivery windows are typically between 1 and 10 days.

Because of the cascade convention stipulating that no column’s time index exceed
an associated row’s time index, we re-define the GTON S, variable. For the cascade
formulation, GTON S;.; is the amount of i’s cargo of type c transshipped on day ¢, but
only when t + gtrv; € TW,. Since GTONS;.; appears only in the objective function,
the MEETDEM constraint, and the TRANSTONS constraint (and is effectively con-
strained only by the latter), the change has minimal impact on the formulation. This adjust-
ment also has the advantage of reducing the number of staircase rows, since each

TRANSTON S constraint includes columns from only one time period.
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In addition to the notation defined previously, let fiz(ROW™) represent all terms
in equation ROW that were fixed prior to subproblem n. Stated another way, fiz(ROW™)

!

is the sum of all associated fixed columns, :.e., those that are indexed by ¢t € |J,,, ., TF™ .
For each n eNC ™, the nth subproblem formulation follows
OBJ": Objective function

minimize

Z Z Z Z latepen; - (t — rdd,-)"' - DTON S;c

i€l a€A ceCo, teTW;NTC™

+ Z Z Z Z latepen; - (t — rdd;)™ - STON Siget

i€l 0y €A c€Co teTW;NTCT

+ Z E Z latepen; - (t + gtrv; — rdd,-)+ -GTON Sict

i€lf0p ceC teTCn

+ Z Z nogopen; - NOGO;. - I (T; NTC™ # 0)

icl ceC

+ > > > usepen, - [THCHOPos + THCHOPRay)

aeAchP beBsup teTCn

+ Z Z Z usepeng - TK REC 4 + Z Z Z usepen, - TK RBC,pt

a€Asir bEB. teTC™ a€A¢xy bEBikr teTCn

~S"5" S restrewa- RONue+» > > dhpeng- DHCREWan:
a€A beB, teTC™ a€A b €Bery tETC™

+ Z Z nogopen; - N OGO?CI -1 (lastp"'_1 < rdd; + maxlate ; < lastp”')
el n’<n

+fiz(obj™)

This objective is similar to the monolith objective, with the following exceptions.
Column indexed by time are active only if the time index is active. Since NOGO;_ is null
indexed (not indexed by time), it is active only if a period of the line id’s delivery window
is active. The late penalty on GTON S, is adjusted for that variable’s re-definition.

The objective also includes two constants: 1) > ,.; > ./, nogopen; - N OGO;‘;,
the accumulated non-delivery penalties from line id’s whose delivery window is now a sub-
set of fixed periods; and 2) fiz(obj™), the accumulated penalties from previous subprob-

lems’ columns indexed by ¢.
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ACBALE": aircraft balance at embarkation nodes

Z Z X Tia.rt + Z Z X Dz‘art

i€lfob rERDNRDig,trn i€l r€ RDyNRD;q dir
E E X TR'ia'rt + E E XD Ria.rt
iGIfob r€RDyNRD;a trn i€l r€RDyNRD;q dir

"I"I(CL (S Atk'r) . [TKRECabt] + RONabt
= RONg—y - I(t—=1€TC™) + > Yaritro,, - I(t — trvar € TCT)

TGRBab
+ALLOC s + I(a € Agr) - [TKRCEqt) + fiz(ACBALEZ,)
VYa € A,b € B, t € TC"

The cascade modification adds a fixed term, and shows only active rows and columns:

those indexed by an active period.

ACBALSUP”: aircraft balance at SUPER debarkation nodes

S Yare+ RONTy + THCHOPus =

TGRBabﬂRBrec

Z Z Xﬂa’rt—trvar ’ I(t - tT'Ua,,- € TCn)

iEIfob TERDbnRDia,trn

+ Z Z X Diart—trog, * I(t — trvgr € TC’")

i€l € RDyNRD;q gir
+(RONTyy—1 + THCHOP.1) - I(t — 1 € TC™)
+I(t = 1) - IRONT,, + fiz(ACBALSUPL,) Va € A,b € Byyp,t € TC™

The cascade modification adds a fixed term, and shows only active rows and columns:

those indexed by an active period, and TRONT,;, for ¢t = 1.
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ACBALREC?™: aircraft balance at SUPER debarkation nodes with recovery

>~ Yare+ RONRaw + THCHOPRay =
r€ERBopNRBrec

> > XTRirt-irus, - 1(t — trve. € TC™)

'iGIfob TERDbﬂRDiay"«n

+ Z Z XDRigrt—tro,, - 1(t — trvg, € TC™)

i€l r€RDyNRD;, dir
+(RONRabt_1 + THCHOPRabt_l) . I(t —-1€ TC'")
+I(t =1)- IRONRay + fiz(ACBALRECS,) Va € A,b € BSpee,t € TC™

The cascade modification adds a fixed term, and shows only active rows and columns:

those indexed by an active period, and JRON R, fort = 1.

INITIRON™: allocate initial chops to recovery or not

IRONT, + IRON Ry, = initchopesy Ya € Achp,b € Beup,n =1

The cascade modification activates rows and columns of this constraint only in the

first subproblem.

ACALLOC™: allocate newly available aircraft

Z ALLOC,;; = newace; Va € At € TC™
beBe

The cascade modification shows rows and columns are active only if indexed by an

active period.

SHUTLBND": don’t send more shuttles than available

S XS (THCHOP. + THCHOPRa| Vo € Ab€ Buup,t € TC"

. shutrateg;
1€Ib,supnlfob a
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The cascade modification shows rows and columns are active only if indexed by an

active period.

TKRBND”: don’t use more tankers than available

K RAay
> TRRAww: KRB, Va€ Aprb € Burt € TC

tkrrate
¥ E€BAp 1k abt/

The cascade modification shows rows and columns are active only if indexed by an

active period.

CLOUDBAL™: flow balance: leaving and entering tanker fleet

> " TKRECas-ttru,, - I(t — ttrva, € TC™)

bEB.

+ Y TKRBCan-tira,,) - I(t = ttrva € TC™)
beBtkr

+fiz(CLOUDBALY,) =

Z TKRCE: + Z TK RC By Va € Agyer,t € TC™

bé Be beBtk,-

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.

TKRINVT": tanker inventory at tanker bed-downs

TK RBCa,bt + TK RBabt =TK RCBabt+
TKRBuy - I(t — 1 € TC™) + fis(TKRINVT?,) Va € Ayr,b € Buy,t € TC"

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.
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ARMOG?": aerial refueling capacity constraint

Z z Z tkrequsap + X Diart—etrog, * 1(t — etrva, € TC™)

i€l a€Amp r€RDyNRD;q dir

+ Z Z Z tkrequsapr + X Tigrt—etrvg, * L (t — €tTvaer € TC™)

i€l a€Arn r€RDyNRDia trn

Z Z Z tkrequsapr + X DRigrt—ctrug,, - 1(t — etrvas: € TC™)

i€l a€Arpn r€RDyNRDig dir

+ Z Z Z tkrequsasr - XT Rigrt—etrvg,, - 1(t — €tTVabr € TC™)

i€l a€A.n T€RDyNRD;q trn

+ Z Z tkrequsaer  Yart—etrug, * 1 (t — €tTvapr € TC™)
aEArﬂ r€RBgp

+fiz(ARMOGY,)
< Y Y tkrpropays - TK RAan Vb € Barp,t € TC™

¥ €BTh arp @€ Atkr

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.
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UTE™: utilization rate

S S S fittimens - XDigre gy - I (¢=(f = 1)€ TC™)

t€T, i€l r€RD;q gir fEFT

+ Z Z Z Z flttimearf : Xﬂart—(f—-l) -1 (t—(f - 1)6 TC’")

teTy i€lpp T€RDig,trn fEFT

+ Z Z Z z flttimegrs - X DRigre—(s—1) - L (t—(f — 1)e TC")

teTy i€l r€RD;q 4ir fEFT

+ Z Z z Z flttimea'rf : XTRiart—(f—l) I (t—(f — 1)6 TC")

t€Ty i€lp TERDig trn FEFT

+ }: Z shuttime;, - X Siat

iGIfob teTw

+3° 3 S fittimens - Ya—(s-y - I (¢~ (f — 1)€ TC™)

teT, r€RBy fEFT

+7 a € Atkr Z Z Ztkrtzmeabb/ TKRA v+

bEBikr b'EBarp te€Ty

+ Z Z hrsper - Tttrvg « TK RECoyt

beB. teTy

+ 5= hrsper - rttrvg, - TKRBCax | + fin(UTE,)

bE B, t€T
< z cumacy; - urate, Vac A, Yu:T,NTC™#0
teT,

The cascade modification adds a fixed term, shows columns are active only if in-
dexed by an active period, and show rows are active only if a time period in the ute rate
block w is active. Although this constraint is much wider than the cascade overlap, fea-
sibility is not jeopardized because of the constraint’s sense. However, it may jeopardize

proximal cascade quality if tight in the solution to the monolith.
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ACCONSUME™: max acft usage to lessen rounding effects

Z Z Z msntimegrf - X Digre—(s-1) - I (t—(f — 1)€ TC™)

i€l r€RD;q gir fEFT

+3° Y S mentimenrs - XTiare—(s-1 - I (¢=(f = 1)€ TC™)

‘iEIfcb TERDia,trn feFT

S S S msntimears - XDRigre_(s-1) - 1 (t—(f — 1)€ TC™)

€] r€RD;q air fEFT

+ Z Z Z msntimegrs - XT Rigre—(s-1) - I (t—(f — 1)€ TC™)

1€lgop r€RD;q trn fEFT

T L. S

, shutrategy;

7'€Ifob
+3° S msntimears - Yare—(s-1) - I (¢—(f — 1)€ TC™)

r€RB fEFT

hrsper
+I(a € Awr) - Z Z TP TKR A
tkrrateabb,
b€ Bikr V' €Barp

+ Z rttrug - hrsper - TK REC
bEB.

+ Z rttrvg, - hrsper - TK RBCabt:!

bEBtk'r

+ Y hrsper- RONaw+ »  hrsper - [RONTus + RON Ray]

beB. bEBsup
+fiz(ACCONSUME?,)
< hrsper - cumacgs Yaec At €eTC"

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.
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DCAPACITY™: aircraft capacity for direct delivery

2

DTON S;oct n pazfraca - DTON Siapaayt - I{a € Apaz) <

ccCanCC PUTECAP;iqgc mazrpax,
Z Tangefaciar ‘ [XDia'rt-tr‘uar + XD-Rriart—trvar] : I(t - trvar € Tcm.)

TERDia,dir

+fiz(DCAPACITY,) Viel,ae At eTC"NTW;

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.

TCAPACITY": aircraft capacity for transshipments

z TTONS;act N pazfracy - TTONS;apast I(a € Apaz) <

ccCanCC PUTECAD;qc marpax,
Z rangefaciar - [-X Tiart—trve, + X TRa'art—t'rva,] I (t — trver € Tcm)

TeRDia,trn

+fiz(TCAPACITY?,) Vi € Iy, a € A,t € TC*NTW,

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.

SCAPACITY™: aircraft capacity for shuttle deliveries

>

ceCenNCC

STONcht + paxfraca . STONSi,a,pa:r,t . I(a E Apam)
PUTECAPD;0c maxrpax,

1€ Ifob,ae AteTC"NTW;

< srangei, - X Siat

The cascade modification shows rows and columns are active only if indexed by an

active period.
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DPAXCAP™: aircraft capacity for direct delivery of pax

DTONSi,a,pa.z,t S

Z marpaly [X Diart—trve, + XD Rﬂ'art—trvar] -1 (t —trve, € Tcm)

T€RD;q, gir

+fiz(DPAXCAPZ,) Vi € 1,0 € Amis,t € TC*NTW;

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.

TPAXCAP”: aircraft capacity for transshipment of pax

TTONSi,a,paz,t S

S~ mazpass - [XTiart-truar + XT Riart—tro,,] - 1(t = trver € TCT)
TERDia,trn

+fiz(TPAXCAPL)) Vi € I, @ € Amiz,t € TC" NTW;

The cascade modification adds a fixed term, and shows rows and columns are active

only if indexed by an active period.

SPAXCAP™: aircraft capacity for delivery of pax by shuttles

STONS; 4 pazt < marpaze - X Siar Vi € Lipp, @ € Amiz,t € TC"NTW,;

The cascade modification shows rows and columns are active only if indexed by an

active period.
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MEETDEM”: meet demand for each line id

> ) DTONSiq+ NOGOi+fiz(MEETDEMY)

a€A. teTCPNTW;

+IGELw) |y, Y. STONSwa+ ) GTONSi| = demi

a€Ac teTCPNTW; teTCn
VeeC, Vi:TW;NTC"#0

The cascade modification includes a term for fixed deliveries, shows columns are
active only if indexed by an active period, and shows rows are active only if the delivery

window includes an active period. Note also that GTON S;; is defined only fort+gtrv; €
TW;.

TRANSTONS": flow balance for transshipped stons

S TTONSua= Y STONSisa + GTONSwx Vi € I c € C;t € TW, N TC"

a€Ac a€Ac

Because of the time-index shift in the GTON S;.; re-definition, this constraint no
longer links multiple time periods. Since GTON Sy is restricted to t + gtrv; € TW;, the
only explicit cascade modifications show columns are active only if indexed by an active

period, and rows are active only if a period of the line id’s delivery window is active.

INITCREWS™!: initialize crew placement

Z SCREW Sgt + crewrat, - E TKRB oy

beBcrw beBtkr

= crewrat, - Newacy Va,t =1

The cascade modification shows rows and columns are only active for the first time

period.
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SCREWBAL™: strategic crew balance of flow

SCREW Sapts1 = SCREW Sgpe - I(t € TC™)
+ Z ’ Z [X Diart—ctr'vab, + XD Riart—ctrvab,] -1 (t - Ctrvab'r € TCm)

i€l TERDia,diran,ari

+5 Y [XDisri-ctrows, + XDRiart-ctrugy,] - It = ctrva € TCT)

ieIfOb TERDia,tman,ori

+ Z Yart-ctr'uabr . I(t - Ctrvab-r S TCn)
7‘G-R~Bh}-zb,m-i

- Z Z [X Diart—etr'vab,. + XD R'iart—etrvab,.] I (t - etrvabr € Tcn)

1€] 7€RD;iq,dirNRy st

- Z Z [X Tiart—-et'r'vabr + X TRz'art—etr'uabr] -1 (t - etr'Ua.br € TCm)

1€1tob 7€ RDja,trnMNRb,dst

- Z Y;zrt—etr'uab,. ’ I(t — etrvger € TC’")
TERBOR},@“

+I(b € B.,t — cttrugpe TC™) - crewrat, - TK RC Egpt—cttrog,

—I(b € B,,t € TC") - crewrat, TK RECont

+I(b € Bsyp,t —1 € TC") - crewrat, - THCHOP,, ,

—I(b € Bgyp,t € TC™)-crewrat, - THCHO PPy + I(1 € TC™) - IRONT,;
+I(b € BSyec,t —1 € TC™) - crewrat, - THCHOPR,, ,

_I(b € BSyee,t € TC™) - crewrat, - THCHOP Roy + I(1 € TC™) - IRON Ry
+I(b € B,,t# 1,newacy > 0,t € TC™) - crewrat, - ALLOC 34

+ Y DHCREW.yu-anirs,, - 1(t — dhtruy, € TCT)

b’ GBCTW

~ Y DHCREWuw: - I(t € TC™)+fiz(SCREWBALy.,

bIGBCT‘IU

VYa € A b€ By, Vt: (€T, t+1€TC™)

In order to satisfy the cascade requirement that no column have a time index greater
than an associated row’s time index, we define this constraint on t + 1. The cascade modi-
fication also adds a fixed term, and shows only active rows and columns: those indexed by

an active period, and JRONT,; and I RONR, fort = 1.
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MOG?": airfield capacity

Z Z Z gtimeabr . acpkgab : [X Diart—etrvab,, + X D-Riart—etrvabr]

7.€I acA TERDbnRDm dir
I(t — etrv,, € TC™)

+ Z E Z gtimeapr - acpkgab + X Diart—trva, = (t — trvg, € TC™)
1616 dst GEA TeRDw dir

+ Z Z Z qtimegsr - acpkgap - X D Rigrt—trug, - I(t — trvg, € TC™)

ZGIb dst a€A TGRD“, dir

+ Z Z Z gtimeab, . acpkgab . [X T-iart—etrvab, + X TRiart—etrvabr]

i€l a€A r€RDyNRD;q trn
I(t — etrv,,€ TC™)
+ Z Z Z gtimeasy - acPkgab + X Tiart—trug, - 1(t — tTvar € TC™)

‘LGIb trn acA ’I‘GRD“; trn

+ Z Z Z qtimeap - acpkgas - XT Riart—trva, - I(t — trver € TC™)
i€l trn AEA TERDig, trn

+ Z Z sgtimeg - acpkgap - X Siat
i€(Ip,dstMfob) Vb trn GEA

+ > S hreper-acpkga - [THCHOFuw: + THCHOPR ]
¥ € BoupNBSs,dwn a€A

+ Z Z gtimeasr - aCPkGab - Yart—etrvgs, - L (t — etrvar € TC™)
acAreRBgy

+I(b € Bir) - Z hrsper - acpkgap + T KRBy
a€Askr
+ Z E Z dpct, - gtimegy, - acpkgap - X Diart—etrvgy,
i€l a€Ap r€RDy givNRD;q,dir
I(t — etrvgr € TC™)
+ Z Z Z deta ) gmmeab'r ) acPkgab . XDRiart—etrvubr

i€l a€Apn TERDy, divNRDjq dir
I(t — etrvgy € TC™)

+ Z Z Z dpct, - gtimear - acpkgab - X Tiart—etrvas.

i€l a€Aqp r€RDy 4ivNRDiatrn
I(t — etrvg, € TC™)

+ Z Z Z deta ) gt":meabr : acpkgab - X TR'iart—etrvab,.
i€l a€Apn r€RDy, divNRDja trn

I(t — etrvger € TC”)

+ Z Z dpct, - gtimegsr - acPkgab - Yart—etrvgs, * (t — etrvgr € TC™)
aGA,-ﬂ TGRBb'div

+fiz(MOGY,

< mogy - mogeffs Vb € B\ Bsup \ Barp\ Buyay,t € rer
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The cascade modification adds a fixed term, and shows rows and columns are active
only if indexed by an active period.

Non-negativity of all variables.

D. NRMO BY LAGRANGIAN CASCADE

With the exception of the objective function, the Lagrangian cascade formulation of
NRMO is straightforward. Rows indexed by ¢ €TRL ¢ are active in subproblem £. Addi-
tionally, rows indexed by t €70 ¢ are active if all technological coefficients are positive, and
the row has sense “<”. Columns are active in subproblem £ if indexed by ¢t €TRL tyTOY,
the extended-active set.

In addition to the notation used in Chapter II, define the following:

ald; Available to load date, the first period in T'W;

RX The set of rows that link two or more sets TRLE.
This is the Lagrange-relaxed constraint set.

Tt  Ute rate block defined as the active set, T = TRL®

Additionally, any variable in the formulation indexed by ¢ €TO* (the extended set)

is a duplicate variable; one that is unique to subproblem £.
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Foreach ¢ €CL:
OBJ¢: Objective function

minimize

Z Z Z Z latepen; - (t — rddi)"' - DTON S;4et

i€l a€A c€Co, teTW;NTRL?

+ Z Z Z Z latepen; - (t — rdd;)* - STON Siqct

i€lsop a€A c€Co te TW;NTRL?

+ Z Z Z latepen; - (t + gtrv; — rdd;)" - GTON St

i€lyop c€C teTRLE

+3" > " nogopen; - NOGO, - I (i : TW; C TRL)

i€l ceC
+ Y ) > usepen, - [THCHOFu: + THCHOPRay]
a€Achp bEBsup te TNTRL?

+ z Z Z usepen, - TK RECoy

a€A¢kr bEB. teTNTRLY

+ Z Z Z usepen, - TK RBCop

a€Agkr bEBiir teTNTRLE

- Z Z Z restrew, - RO Nyt

a€A beB. teTNTRL*

+ Z Z Z dhpeng - DHCRE Wbyt

a€A bt €Berw teTNTRL®
+Llterm

The objective function is similar to the monolith’s objective function, but columns
are active only if indexed by an active period, £ € TRLE. It includes the NOGO;. columns
for a line id only if #’s delivery window is a subset of the active periods. The definition of
GTONS,,, is identical to the one used in the proximal cascade formulation.

The objective function also includes £term, which is the Lagrange penalty term for
all active columns associated with Lagrange-relaxed rows. The coefficient on each of the
Lagrange penalty terms in the objective is quite complex. Rather than list them entirely,

we list the coefficient on the variable X T}y only. Dual multipliers 8 corresponding to
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Lagrange-relaxed rows are superscripted with the row’s name:

SN > > XTiare | Y BatB4F - I1(ACBALEuy € RX)

i€lfop €A r€RDyNRD;e trn teTRLE beB.

+ Y BACBALSUP . [ (ACBALSUPu € RX)

bEBsup

N Z ,BARMOG - tkrequsgy, - [ (ARMOGabt+etr'uabr € RX)

abt+etrvgp,
b€Barp

- Z Bt[ljti?f—l) . flttimeg,s - I (t+ (f — 1) € TRL*)
fEFT

- Z o A OME . msntimegrs - I (ACCONSUM Egper(-1) € RX)
feFT
+BECAPACITY  rongefacie - I (TCAPACIT Y at4tr0,, € RX)

tat+trvgr

+BTPAXCAP  max pazy - I (TPAXCAPiat+trv., € RX)

tat-+trvar

— Y BSGREWBAL . [(SCREW BALattsrsctrvn, € RX)

bEBerw

+ Z :Bfgﬁvgtﬁﬁi - I (SCREW BALgpt+1+etrvg,, € RX )

bEBerw

- > Bt Gtimeasy - acpkgay - I (MOGhsietry,, € RX)
bGB\Bsup\Barp\Bway

- Z ,Bgfft?u” ’ gtimeabr : acpkgab * I (MOth-}-trva,- € RX)
bGB\Bsup\Barp\B‘way

- Z 16 %—gfvar . dpcta : gtimeabr : a'cpkgab -1 (M Oth"'t”’“" € RX)
b€ B\ Bsup \Barp\Bway

The Lagrangian cascade solution value is given by the sum of the subproblem objec-
tive values, plus the sum of the Lagrange-relaxed row right-hand-sides multiplied by their

associated penalties.
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ACBALE?: aircraft balance at embarkation nodes

Z Z X ,I’ia.rt -+ Z Z X D. iart

i€y TERDyNRD;ig,trn 1€l r€RDyNRD;q gir

Z Z X TR,,‘m-t + Z Z X D Ria.rt

iGIfob TGRDbnRDia,,trn el reRDbnRDm,d,-,

+1(a € Awr) - [TKRECuy] + RONayy = RONast—1+ Y, Yart—trua,
r€RB,p

+ALLOC, + I(a € Auy) - [TKRCE ) Va € A,b € B.,t € TRL*

The cascade modification activates rows and columns indexed by the active set, and

duplicates columns indexed by the extended set.

ACBALSUP?: aircraft balance at SUPER debarkation nodes

S~ Yart + RONTa + THCHO Puy =

rE€ERBgpNRBrec
-_>- E X Tz’art«-tma,- + E -_>- X D tart—trvaer
1€Iep r€RDyNRD;g trn i€l r€RDyNRD;q gir

+RONTys—1 + THCHOP -1 + I(t =1) - IRONTy Va € A,b € By, t € TRL*

The cascade modification activates rows and columns indexed by the active set,
and duplicates columns indexed by the extended set. [ RONT,; is only active in the first

subproblem.
ACBALRECY: aircraft balance at SUPER debarkation nodes with recovery

> Yes+ RONRuy + THCHOPRan =

r€RB,,NRBrec
E E X TRfia.rt—tr'uar + E E XD R'ia‘rt—tf‘var
iEIfob T€RDyNRD;q trn i€l r€RDyNRD;q dir

+RONRyyi_1 + THCHOPRg—1 + I(t =1) - IRONRy Va€ Abe BS,ec,t € TRL

The cascade modification activates rows and columns indexed by the active set,
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and duplicates columns indexed by the extended set. I RON Ry is only active in the first

subproblem.

INITIRON®: allocate initial chops to recovery or not

IRONT,, + IRON R, = initchops, Va € Achp,b € Boyp

The cascade modification activates these rows and columns only in the first sub-
problem.
ACALLOC?: allocate newly available aircraft

> " ALLOCqy = newace; Va € A,t € TRL*
beB.

The cascade modification activates rows and columns indexed by the active set.

SHUTLBND®: don’t send more shuttles than available

> X [THCHOP, + THCHOPRy] Va € Ab € Beyy,t € TRLF

, shutrategy;
1€y supNifop az

The cascade modification activates rows and columns indexed by the active set.

TKRBND?: don’t use more tankers than available

T bl
§ : TKRAww: < TKRB.: Va € Agyr,b € Byy,t € TRL
tkrrateabb/
b'€B Ap,tkr

The cascade modification activates rows and columns indexed by the active set.
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CLOUDBALY: flow balance: leaving and entering tanker fleet

> TKRECut-tiruy + ), TKRBCan-ttrvn, =

beB. ) b€ Bikr
S TKRCEw+ )  TKRCBun Va € Agr,t € TRL
beBe. bEBykr

The cascade modification activates rows and columns indexed by the active set, and

duplicates columns indexed by the extended set.

TKRINVT?: tanker inventory at tanker bed-downs

TKRBC,s; + TK RBay = TKRCBap + TKRBapt—1  Va € Atkr,b € Boer,t € TRL*

The cascade modification activates rows and columns indexed by the active set, and

duplicates columns indexed by the extended set.

ARMOG: aerial refueling capacity constraint

Z Z Z tkrequsapr - X Diart—etrog, * L(t — €tTVabr € TRL‘U TOZ)
i€l a€A n r€ RDyNRD;q gir

+y > S threqusar - XTiari—etrog, - 1(t = €T € TRL*UTO%

iGI aeArﬂ TGRDbnRDia,trn

Z Z Z tkrequsasr - X D Rigrt—etrvg, - 1(t — €tTvabr € TRL* UTOY

i€l a€An r€RDyNRD;q dir

+ Z 2 Z tkrequsasr - XT Rigrt—etrvg,, - 1(t — €tTVabr € TRL‘U TOZ)
i€l a€Am r€RDyNRDig,trn

+ Z Z tkrequsasr - Yart—etrvg, - 1 (t — €tTVabr € TRLt*UTOY
a€An r€RBgs

< > > tkrpropays - TK RAayu Vb € Barp,t € TRLEUTO*

.4 GBTb'a,.P a€Aikr
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The cascade modification activates rows indexed by the extended-active set, columns

indexed by the active set and duplicates columns indexed by the extended set.

UTE?: utilization rate

Z Z Z Z flttimears - X Digrt—(f-1)

tGTﬁ i€l r€RD;, gir fEFT

+Z Z Z Z flttimegrs - XTiare—(5-1)

tGTﬁ i€ Iy T€ERDig trn FEFT

+ ZZ Z Z flttimegry - XDR;ore—(r-1)

teTt i€l r€RD;q gir fEFT

+Z Z Z Z flttimegrs - XT Rigre— (1)

tGT.‘f iEIfob TeRDia.,tr'n. fGFT

+ Z Z shuttime;q - X Siat + Z Z Z flttimears - Yore—(5-1)

1€lop teTE teTt rERBy fEFT

+I(a € Agr) - Z Z Z tkrtimeasy - TK RAqbyt

beBtkr 4 EBarp tGT‘

+ Z Z hrsper - rttrvg, - TK REC,p

bEB. teT¢

+ Z Z hrsper - rttrvg - TK RBC

bGBtkr tGT,f

< Z cumacy - urate, VYa € A
teTe

The lack of utilization block specificity allows some modeling freedom, hence we
re-define these blocks as the active set: 72 = T RL*. Because missions launched in a period
usually consume flight time in subsequent periods, the UTE constraint still overlaps the
previous subproblem, and must be relaxed. However, since the majority of the associated
columns are indexed by the active set (plus some indexed by the extended set), enforcing

UTE’ provides nearly the same restriction on the feasible region.
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ACCONSUMEY?: max acft usage to lessen rounding effects

Y S S mentimeas - XDiari—(s-1) - 1 (t=(f — 1) € TRL*UTOY)

i€l r€RD;q gir fEFT

+ Z Z Z msntimegs - XTiare_(j—1) - I (t—(f —1) € TRL* U TOY)

iGIfob TGRDia,g-,-n fGFT

S5 S S msntimeas - XDRigrt— (s - I (t=(f — 1) € TRLAUTOY)

i€l r€RD;q gir FEFT

+3 S S msntimeas - XTRiare—s-1) - I (t=(f — 1) € TRLFUTO')

iEIfob T‘GRDia trn fEFT

h
n Z T SPCT X Siat

shutrate,;
i€lfop

+ Z Z msntimears * Yare—(f—1)* 1 (t—(f —1) e TRL*U TOZ)
r€RB fEFT

+I(a € Agr) - Z Z _hrsper - TK RA gt

thrrateqsy
b€ Beir V'€ Barp abb

+ Z rttrvg, - hrsper - TK REC g
beB.

+ Z rttrug, - hrsper - TK RBCap

beBtkr
+ Z hrsper - RONgp + Z hrsper - [RONTg: + RON Rapt)
beBg ' beBsup
< hrsper - cumacg Ya € A,t € TRL*UTO!

The cascade modification activates rows indexed by the extended-active set, columns

indexed by the active set and duplicates columns indexed by the extended set.
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DCAPACITY*: aircraft capacity for direct delivery

DTONS,L . DTON i,a
> t  poafioce PRORSierst 10 € A
ceCunCC purecap;qc marpazx,
S Z Tangefaciar . [X Dia'rt—tr'uar + X D R/ia'rt—tr'va,.]
7€RD;q gir

Vie I,a€ At € TRL* NTW,;

The cascade modification activates rows and columns indexed by the active set, and

duplicates columns indexed by the extended set.

TCAPACITY?: aircraft capacity for transshipments

TTONS; o TTONS;,
> oo, PATITOC 225 (0 € Ape)
ccbmcc PUTecaPiac MaTpat,
< Z rangefaciar + (X Tiart—trve, + X T Riart—trva.]
TeRDia,trn

Vi € Ifob,a €A te TRL? NTW;

The cascade modification activates rows and columns indexed by the active set, and

duplicates columns indexed by the extended set.

SCAPACITY?: aircraft capacity for shuttle deliveries

Z STON S;act 4 pazfracy, - STONS; o pazt I

(a € Apez)
ccCanCC pUuTrecap;qe mazrpaz,

< srange;q + X Siat
Vi € Ip,a € A,t € TRLENTW;

The cascade modification activates rows and columns indexed by the active set.
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DPAXCAP¢: aircraft capacity for direct delivery of pax
DTONSi,a,paz,t S Z marpax, - [XDia/rt—trvar + XDI?'iart—trva,.]

reRDia,dir

Viel,a€ Apiz,t € TRL*NTW,;

The cascade modification activates rows and columns indexed by the active set, and

duplicates columns indexed by the extended set.

TPAXCAP?: aircraft capacity for transshipment of pax

TTON Si,a,paz:,t S Z maxpaxa ° [X T:iart—trvar + X TRfiart—trvar]

TeRDia.,trn
Vi € Iip, @ € Amiz,t € TRLENTW;

The cascade modification activates rows and columns indexed by the active set, and

duplicates columns indexed by the extended set.

SPAXCAPY: aircraft capacity for delivery of pax by shuttles

STONS; 4 pazt < MaTPazy - X Siat Vi € Itpp, @ € Amiz,t € TRLENTW;

The cascade modification activates rows and columns indexed by the active set.

MEETDEMY: meet demand for each line id

Z Z DTON S;oet + NOGO;,

GGAC tGTW;

+I(i € Iw)- | Y. D STONSieq+ Y GTONSi| = demyc

acAc teTW; teT
Ve e C, Vi: TW; C TRL*

96



The cascade modification activates this row only if the line id’s delivery window is
a subset of the active set. Thus, many of these rows are Lagrange-relaxed, which motivates

the following supplemental constraint.

MEETDEM1‘: do not exceed demand during each subproblem

> > DTONSiee + I(i € Iw)-

a€A; teTW;

> N STONSiwu+ )  GTONSixt| < demi

aCAc teTW; teT

Ve € C, ¥i: (TW; N [TO* UTRLY] #0,TW; ¢ TRL)

MEET DEMand 1: Tons delivered can never exceed demand for any subproblem.
This bounds the DTONS, STONS and GTON S variables when the MEETDEM con-
straint is Lagrange-relaxed. The cascade modification activates this constraint whenever
the line id’s delivery window includes elements of the active set, unless the MEETDEM

constraint is active.

TRANSTONS®: flow balance for transshipped stons

S TTONSiget = Y, STON Siaet + GTONSicx Vi € i, ¢ € C, t € TW; NTRL!

GEAC aeAc

Because of the time-index shift in the GTON S, re-definition, the only cascade

modification activates rows and columns indexed by t € TW; N TRLE.

INITCREWS®=: initialize crew placement

Z SCREW Su + crewrat, - Z TK RB gyt

beBcrw be Btkr

= crewrat, - newacy Va,t =1
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The cascade modification activates these rows and columns only in the first sub-

problem.

SCREWBALY: strategic crew balance of flow

SCREW Sapt+1 = SCREW Sas
+ Z Z [XDiart—thabr + XDRiG-Tt—CtT'Uab,.]

iel TeRDia,diran,ari

+ Z Z [X Tiart—ctrva,,, +X TRiart—ctrvabr]

iEI.fOb TeRDia,trn an,ori

+ —_>- }/art—ctrvab,

TERBanYO,-,‘

-> z [X Diart—etrvgpr + X DRiart—etrvas. |

1€I r€RD;q dirNRb,dst

- Z Z [X"nart—etmabr +X T-Riart—etrvab,,.]

i€lfop T€RDia trn an,dst

- E Ya’rt—etrvab,.

rERBNRy 45t
+I(b € B,) - crewrat, - [TK RC Egpt—cttrv,, — TK REC )
+I(b € Boyp)-
crewraty - [THCHOP -1 — THCHOPFay: + I(t=1)- IRONT,)
+I(b € BSrec)
crewraty - [THCHOPRgy1 — THCHOPRw + I(t = 1) - IRONRy)
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As with a proximal cascade, this constraint is defined and indexed on ¢ + 1. The
cascade modification activates rows and columns indexed by the active set, and duplicates
columns indexed by the extended set. Additionally, / RONT,, and IRON Ry, are active
fort = 1.
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The cascade modification activates rows indexed by the extended-active set, columns

indexed by the active set and duplicates columns indexed by the extended set.

Non-negativity of all variables.

E. NRMO CASCADE RESULTS

Because of its structure and complexity, NRMO is an excellent model to test prox-
imal and Lagrangian cascades. A moderately sized scenario consists of hundreds of line
id’s; large scenarios can easily overwhelm current computing capabilities. Additionally, the
model should produce results that are intentionally myopic, since that is a characteristic of
the underlying airlift system.

Three NRMO problem instances are used to test cascade performance. The first
problem is the primary test scenario used at NPS to verify and validate air mobility linear
programs. We took the remaining two scenarios from an ongoing study by RAND [Stucker
and Melody, 1996].

The performance tests measure the effect of three parameters on the proximal-
Lagrangian gap. Typically, larger values of the proximal cascade width, caswid, proxi-
mal cascade overlap, v, and Lagrangian cascade width, Iwid should all reduce the gap. The
tests also examine the effect of these parameters on solution time when both simplex and
barrier methods solve the cascades.

Each of the three problem instances is generated by GAMS [Brooke, et al., 1992],
and written into MPS format. Additionally, the GAMS output provides a file that maps
each row and column to its associated time index. The cascade logic executes in C using
the CPLEX callable library version 3.0 [CPLEX, 1994]. A utility translates the solution
reported by CPLEX to a GAMS compatible format. Unless otherwise noted, the computer
used is an IBM RS6000/590 with 512MB of RAM. All times are given in CPU seconds.

1. Notional Southwest Asia Scenario

The notional Southwest Asia scenario was originally designed to test THRUPUT
II [Lim, 1994], one of NRMO?’s predecessors. It includes 21 line id’s, 7 aircraft types, 35
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routes and 30 time periods. The associated linear program has 4,100 rows, 7,400 columns,
39,000 non-zeros, and a maximum staircase overlap of two periods. In this scenario, a
contingency in Southwest Asia (SWA) requires deployment of several Army and Marine
Corps brigades from CONUS, 15 Air Force fighter wings from CONUS and Europe, and
an Army mechanized division from Europe. The requirement intentionally exceeds delivery

capacity in order to strain the system and identify airlift bottlenecks.

Cascade Cascade Upper Lower %G Proximal Lagrange Total
Width Overlap Bound Bound ouap Time (sec) Time (sec) Time (sec)
Monolith 294.1 n/a n/a n/a n/a 61
20 5 296.6 286.9 3.4 47 19 66
20 10 294.6 290.0 1.6 57 20 77
20 15 294.1 292.5 0.6 94 i8 112
18 5 303.6 262.0 15.9 46 18 64
18 10 296.7 287.1 3.3 67 21 88
18 15 294.1 291.6 0.9 124 18 142
15 5 303.3 275.9 9.9 41 19 60
15 10 295.4 286.3 32 73 19 92
15 12 294.7 285.2 3.3 107 19 126
10 5 305.3 273.7 11.6 41 20 61
10 7 300.0 266.4 12.6 58 20 78

Table 1. Relative gaps and solution times for the Southwest Asia scenario vary with cascade parameter selection. The first
two columns show proximal cascade widths and overlaps; Lagrangian cascade widths are all 15. The remaining columns
show the performance (computing times are in seconds on an IBM RS6000/590 with 512MB RAM). For example, a prox-
imal cascade with width 18 and overlap 10 gives an upper bound solution value of 296.7; the corresponding Lagrangian
Jower bound is 287.1, resulting in a gap of 3.3%. The proximal and Lagrange solve times are 67 and 21 seconds, respec-
tively, for a total of 88 seconds. The first row of the table gives the monolith’s solution value and time, which provides
a baseline for the other runs. Each test uses CPLEX 3.0 [CPLEX, 1994] with primal simplex method and steepest edge

pricing.

Table 1, and Figures 6 and 7 illustrate that solution quality improves with increased
cascade overlap and width. Figure 6 shows a strictly decreasing gap with increasing cascade
overlap for cascade widths of 18 and 20. These decreasing gaps come at a computational
cost, however, as indicated by the proximal cascade solution times. Figure 7 also shows

generally decreasing gaps with increased cascade width, albeit less convincingly.
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Figure 6. Solution gaps for the Southwest Asia scenario decrease significantly with increased proximal cascade overlap.
The triangles show the proximal (solid line) and Lagrangian (dotted line) cascade solution values for an 18 period proximal
cascade width; the squares show the solution values for a 20 period width. All Lagrangian cascade widths are 15. The
absolute gap, measured by the vertical distance between proximal and Lagrangian solution values, is much smaller with
a 10 period overlap than a 5 period overlap, and smaller still for a 15 period overlap.
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Figure 7. Solution gaps for the SouthwestAsia scenario generally decrease as proximal cascade width increases. Proximal
cascade width has a smaller effect on the absolute gap than the proximal cascade overlap.

102



Cascade Cascade Upper Lower Proximal Lagrange Total

%Gap
Width Overlap Bound Bound Time (sec) Time (sec) Time (sec)

Monolith 294.1 n/a n/a n/a n/a 61
20 : 5 296.6 286.4 3.6 47 1n 58
20 10 294.6 288.7 2.1 57 10 67
20 15 294.1 288.1 2.1 94 11 105
18 5 303.6 273.2 11.2 46 11 57
18 10 296.7 279.6 6.1 67 11 78
18 15 294.1 2814 45 124 10 134
15 5 303.3 267.8 13.3 41 11 52
15 10 295.4 281.3 5.1 73 10 83
15 12 294.7 280.2 5.1 107 11 118
10 5 305.3 265.8 14.8 41 n 52
10 7 300.0 263.6 13.8 58 13 71

Table 2. This table depicts Southwest Asia scenario results with the Lagrangian cascade width equal to 10. These results
are similar to the lwid = 15 test (see the previous table), although the gaps are slightly larger. This is due to the greater
number of Lagrange-relaxed rows. Note that the Lagrangian cascade solves faster with three subproblems (this table) than

two subproblems (previous table).

Table 2 depicts the SWA scenario results using the same proximal cascade parame-
ters as Table 1, but with a Lagrangian cascade width (/wid ) of 10. As expected, the lower
bounds are weaker for lwid = 10 than for lwid = 15, because the monolith is split in two
places for this relaxation. However, the Lagrange solution times when lwid = 10 are about
half as long as their lwid = 15 counterparts. This is despite the fact that the lwid = 10
cascade requires one more subproblem than a lwid = 15 cascade.

In this problem, temporal myopia has only a minor effect on solution quality even
when the scheduling horizon is reduced by as much as two-thirds. When the proximal
cascade width is only 10 periods, the solution values are still within 4% of the monolith

solution. Longer solution horizons produce even closer results.

2. European Infrastructure Scenario I

Concurrent with this research, a RAND Corporation study for the Office of the Sec-
retary of Defense (OSD) is examining European air bases transited by USAF airlifters. The
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purpose of this study is to determine which bases have insufficient infrastructure to ad-
equately support a Major Regional Contingency (MRC) in Southwest Asia [Stucker and
Melody, 1996]. The problem consists of 220 line id’s, six aircraft types, 22 routes, and 30
time periods. Approximately 75% of the scenario’s movement requirements originate in
CONUS. The corresponding linear program has 27,000 rows, 126,500 columns, 921,500

non-zeros, and a maximum staircase overlap of two periods.

Cascade Cascade Upper Lower %G Proximal Lagrange Total
Width Overlap Bound Bound ovap Time (sec) Time (sec) Time (sec)

Monolith 106.1 n/a n/a n/a n/a 980

20 5 108.7 93.8 15.8 1010 590 1600
20 10 106.9 101.8 5.0 1260 704 1964
20 15 106.9 102.9 39 1907 663 2570
18 5 107.4 91.8 17.0 933 630 1563
18 10 107.6 98.3 9.5 1352 605 1957
18 15 107.1 100.4 6.7 2652 715 3367
15 5 109.2 84.5 29.3 959 659 1618
15 10 107.6 96.0 12.1 1527 650 2177
15 12 107.5 99.9 7.6 2307 601 2908
10 5 1133 75.8 494 1061 639 1700
10 7 110.9 83.7 324 1483 770 2253

Table 3. Computational results for European Infrastructure I also show that relative gaps and solution times vary with cas-
cade parameter selection. The solve times are much longer than Southewst Asia scenario solve times due to problem size.
All runs use the CPLEX 3.0 Barrier algorithm [CPLEX, 1994]. Lagrangian cascade subproblems have 15 periods each.
The first row is the monolith baseline; subsequent rows show performance using various proximal cascade parameters.

All times are in seconds.

The results of this scenario (see Table 3, and Figures 8 and 9) are generally consistent
with those of the first test. Figure 8 shows a pronounced reduction in gap as cascade overlap
increases, while Figure 9 shows a more moderate reduction with increased cascade length.
Upper bounds are of better quality than lower bounds, due to the sensitivity of the lower

bound to small errors in the Lagrangian penalties. Thus, the proximal cascade results show
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Figure 8. This Figure depicts cascade solution values for the European 1 scenario when proximal cascade overlap is
varied. Proximal cascade overlap has as large an effect on this scenario as it did on the notional Southwest Asia scenario.

As before, increasing the overlap reduces the gap.
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Figure 9. Solution gaps for the European I scenario are reduced with increasing proximal cascade width. These reductions,

although smaller than those seen in the Southwest Asia scenario, are still quite evident.
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that the effects of myopia are small, since most of the upper bound solution values are within

a few percent of the monolith value.

3. European Infrastructure Scenario 11

This scenario is a continuation of the RAND study for OSD. However, it includes
different assumptions regarding international overflight permissions, and includes a larger
Civil Reserve Air Fleet (CRAF) component. As before, the problem consists of 220 line
id’s and 30 time periods, but there are now eight aircraft types and 24 routes. Additionally,

the routes are generally more circuitous than those of European Infrastructure 1. The cor-

Cascade Cascade Upper Lower %G Proximal Lagrange Total
Width Overlap Bound Bound o P Time (sec) Time (sec) Time (sec)

Monolith 247.3 n/a n/a n/a n/a 860

20 5 266.2 155.7 71.0 726 391 117
20 10 251.1 204.9 225 926 391 1317
20 15 248.4 206.7 20.8 1399 353 1752
18 5 263.4 156.2 68.6 878 400 1278
18 10 252.0 173.8 45.0 1297 397 1694
18 15 249.5 176.3 41.5 2087 349 2436
15 5 282.5 148.4 90.4 747 352 1099
15 10 262.8 160.1 64.2 1247 373 1620
15 12 255.4 176.8 74.0 1909 378 2287

Table 4. The European Infrastructure II scenario produces considerably larger gaps than the first infrastructure scenario.
Much of the difference results from a weaker Lagrangian bound. As before, the proximal and Lagrangian cascades use
the CPLEX 3.0 Barrier algorithm [CPLEX, 1994]. All Lagrangian cascades have 15 periods each. Times are in seconds.

responding linear program has 29,400 rows, 115,700 columns, 901,600 non-zeros, and a
maximum staircase overlap of two periods.

Table 4 shows the results for a variety of proximal cascade widths and overlaps.
These results demonstrate that this problem instance is more affected by myopia than the
first two. Consequently, the smallest gap computed is 20.8%, although the largest part of

that gap results from a loose lower bound.
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4. Solve Time Performance

a. | Cascade Versus Monolith

The three scenarios do not exhibit pronounced time savings when using cas-
cades. However, the test platform is a computer with sufficient memory for monolith so-
lution without paging. In order to verify that cascades save time when memory is limited,
we reduce the problem size of the two European scenarios by limiting line id delivery win-
dows. This reduction allows solution by a Dell Pentium Pro 200 MHz desktop computer
with 64 MB RAM.

Table 5 shows that cascades save up to 80% of the time required for monolith
solution. The savings come at a moderate cost in solution quality, since limited memory
requires that cascade subproblems have small widths. This consequence is minor in models

such as NRMO, where myopia should be enforced regardless of available memory.

Cascade Cascade Upper Lower %Gap Proximal Lagrange Total % Time
Width Overlap Bound Bound Seconds Seconds Seconds Savings
Reduced European Infrastructure I (14,442 rows, 64,252 columns, 462,645 non-zeros):
Monolith 106.9 n/a n/a n/a n/a 4410 n/a
10 5 116.7 90.2 29.4 572 310 882 80.0
10 7 115.3 92.0 25.2 844 310 1154 73.8
15 5 109.6 96.1 14.1 4080 310 4390 0.5
Reduced European Infrastructure II (16,874 rows, 63,336 columns, 453,663 non-zeros):
Monolith 239.7 n/a n/a n/a n/a 4169 n/a
10 5 245.7 178.4 377 532 476 1008 75.8
10 243.0 203.5 19.4 760 480 1240 70.3
15 2429 218.1 11.4 2160 480 2640 36.7

Table 5. Cascades offer a significant time savings when the monolith cannot be solved with installed memory. The
computer used for these results is a Pentium Pro 200 MHz desktop with 64 MB RAM (previous results use an IBM
RS6000/590 with 512 MB RAM). The first row of each scenario shows the monolith solution value and time using the
CPLEX interactive barrier solver [CPLEX, 1994]. The next two rows in each scenario indicate cascades offer a dramatic
time savings when moderate cascade widths are used. The final row of each scenario shows that much or all of this savings
is lost when cascades also require paging.
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b. Barrier Versus Simplex

The barrier algorithm solves cascades of the test scenarios faster than the
simplex algorithm, even when large cascade overlaps permit the exploitation of advanced
simplex bases. Figure 10 depicts solution speeds for proximal cascades with different num-

bers of subproblems using the Notional SWA scenario on the IBM RS6000/590.  The first

120
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Figure 10. Large problems solve much faster using the barrier algorithm (IBM RS6000/590). The vertical axis shows the
notional Southwest Asia cascade solution time in seconds; horizontal bands represent the monolith solution time. The
horizontal axis shows the number of subproblems, which is a function of cascade width, caswid , and cascade overlap,
v. The plots represent the simplex and barrier times with caswid fixed at 15, and v = 5, 10, and 12. These parameter
settings specify the number of subproblems to be 3, 4, and 6, respectively.

impression gleaned from the figure is the disparity between simplex and barrier solve times.
This is not surprising, given that CPLEX recommends the barrier for problems with more
than 1,000 rows and columns [Klotz, 1996]. However, the relative trend of the solve times
is surprising. Compared with the simplex cascade, the barrier cascade appears to perform
better as the number of subproblems increases, as shown by the divergent trend of the two
plots. This is inconsistent with the notion that simplex cascade subproblems are fully ex-

ploiting advanced bases. If that were true, simplex performance would improve (relative
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Figure 11. This plot includes the same data as in the previous figure (Notional Southwest Asia, caswid=15), but the
vertical axis depicts the solve times as a ratio of the cascade solution to the monolith solution. Because the simplex
ratios are lower than the barrier ratios, this figure shows that simplex cascades perform better than barrier cascades when

compared to their respective monolith solution times.

to the barrier method) as the overlap increases, since more of the basis is preserved from
subproblem to subproblem.

Although exploiting advanced bases during the proximal cascade does not
appear to be effective, there is one encouraging simplex performance measure. Relative to
their respective monolith solve times, a simplex cascade appears to solve faster than a barrier
cascade. Figure 11 illustrates this by depicting the vertical axis as the ratio of cascade to
monolith solve times for both simplex and barrier. This result is consistent with the idea that
simplex solve times increase faster with problem size than do interior point method solve
times, since solving the large monolith is relatively more time consuming for the simplex

method. Thus, cascades appear more attractive when a barrier algorithm is unavailable.

E NRMO SUMMARY

The NPS/RAND Mobility Optimization is the most detailed military mobility op-

timization model ever built. It incorporates all the features of prior models from NPS and
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RAND, as well as some additional features. As such, it is a huge model, and solving the
monolith may not always be possible. Moreover, NRMO models an imperfect schedul-
ing process, and therefore should incorporate myopia. For these reasons, it provides the
motivation and initial test platform for the combined proximal and Lagrangian cascades.

NRMO exhibits the basic staircase structure required by proximal and Lagrangian
cascades, but is complicated by numerous additional constraint types. The NRMO formu-
lations in this chapter illustrate how cascades can accommodate a wide variety of constraint
types, although minor alteration is sometimes required.

Upper bounds from the proximal cascade are typically within a few percent of mono-
lith optimal. Lower bounds from the Lagrangian cascade have generally less quality, but
are often still within a few percent of monolith optimal. Cascade solution times are less
than the monolith solution times when small cascade overlaps are used, or when installed
memory is limited.

With the cascades now demonstrated on a large and complex model, some general-

ization is warranted. That generalization is the subject of the next chapter.
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V.  USING CASCADES WITH GENERAL LPs

We now examine the application of cascades to general linear programs. Specifi-
cally, we address what conditions make cascading desirable, and how to improve cascade
solution quality. Of foremost concern is assessing cascade suitability, i.e., whether or not
a cascade solution is feasible and likely to approximate the monolith solution. A staircase
structure with minimal row width (width is the range of the non-null cascade set indices ap-
pearing in a row) is perhaps the best indicator of suitability, because all columns associated
with each row are proximally related. We propose a simple heuristic to gauge a model’s
staircase structure by examining a temporal, spatial, or other ordering of rows and columns.
Next, we consider some motivations for cascading: 1) inability to solve the monolith due to
its large size, 2) desire to intentionally induce solution “myopia,” and 3) isolation of sub-
problems that may solve the monolith faster. Cascades are appropriate if a suitable model
exhibits, or can be reformulated to exhibit, any of these. Finally, we offer several methods
to incorporate dual information into a proximal cascade, thereby reducing the gap between

proximal and Lagrangian cascade solution values.

A. WHEN WILL CASCADES WORK?

An arbitrary model monolith may or may not be susceptible to cascade solution.
This section offers a method to select a cascade index set that may facilitate cascade fea-
sibility and achieve a good solution. We also examine several model constructs that may
reduce cascade suitability, and suggest monolith reformulations that are more amenable to

cascades.

1. Gauges for Cascade Suitability

In order to determine suitability, we develop several gauges that can either be used to
evaluate a candidate cascade index scheme, or to assess a reformulation to enhance cascade

suitability. Assessing suitability a priori requires a cascade index set that prescribes an
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ordering of rows and columns. The key is to choose an index set where the maximum
and average row widths are small; an arbitrary ordering is not likely to exhibit this property.
Although time is usually the most intuitive choice for the cascade index, location or priority
may also be good choices. Ordering by one of these index sets is likely to reveal the staircase
structure in a monolith, if such a structure exists.

We offer the following gauges that suggest suitability of a linear program: 1) the
cascade factor, casfactorr, which is the average row width normalized for the non-null
cardinality of each candidate index set, 2) the maximum width factor, wr, which is the
maximum normalized row width, and 3) the always active rows, allact v, which is the num-
ber of rows that have no correspondence with non-null cascade indices. The following
definitions and notation are useful:

e Model rows and columns have one or more candidate cascade index sets. Each
setT = {0}U{1,2, ..., |T|} is composed of a null element and a non-null ordinal
subset. An example index is time, where 0 is the null index of a row or column
without a time-period index.

e Let model rows be labeled by i = {1,2,...,|I|}, model columns be labeled by
i=1{L2,..,|J}

e Let a;; be the coefficient in row ¢ and column j.
e Lett; be the index from set 7" in column j.
e Define maxt ;7 as the maximum column index ¢; associated with row <.

e Define mint ;7 as the minimum non-null column index ¢; associated with row <.
mint ;v = 0 if all associated columns are null indexed.
o Letwtotal r = 3, (maxt ;v —mint ;r), the sum of row widths.

o Let averagewr = wtotal ¢ / |I|, the mean width of all rows.

e Define straddle . as the number of rows containing non-null elements of T such
that maxt ;7 > t and mint ;7 < t.

With these definitions, we can compute the suitability gauges:

averagewr | |T|, if min, [straddle.r] > 0
casfactorr { 0, if min, [straddle 7] = 0
wr (max; [maxt;; — mint;7)) / |T|

allact the number of labels 7 such that maxt ;7 = mint ;7 = 0
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Of these three gauges, cascade factor (casfactor ) is the most comprehensive indi-
cator of cascade suitability, since it considers every row’s non-null width. casfactor 7 is zero
if the problem is entirely separable into two or more subsets of 7", which implies that prox-
imal cascade subproblems may be solved without loss of monolith optimality. casfactor
does not attempt to distinguish the relative size or number of separable subproblems.

Proximal and Lagrangian cascade solution qualities are conjectured to be better
when casfactor v (greater than 0), wr, and allact + are small. Small row width suggests
fewer fixed columns and fewer Lagrange-relaxed rows in the proximal and Lagrangian
cascades.

Maximum row width is also an important indicator of cascade suitability. A single
row that links all non-null indices may result in an infeasible cascade or a solution of low
quality, since satisfying this row may require that all associated columns be simultaneously
active. Consequently, smaller values of wr should indicate better cascade suitability.

Finally, allact r reports the number of rows whose associated columns have null in-
dex t; = 0. These rows must be handled by exception when forming cascade subproblems,
since they are not accommodated by ﬁhe ordering prescribed by the candidate index set. As
with casfactor 1 and wr, smaller values of allact 1 should indicate better cascade suitability,
since fewer exceptions must be dealt with.

Although these gauges may correctly predict cascade suitability, there are some
model constructs that cause them to give an incorrect assessment. These gauges can also
indicate the presence of model constructs that may be altered to increase cascade suitability.

We discuss several of these constructs below.

2. Cumulant Constraints Complicate Suitability

Small formulation differences can have a marked effect on cascade suitability. Con-

sider the staircase form of a production-inventory constraint:
Xt + It—l - It = dt ‘v’t,

where X;, and I, represent production and inventory decision levels in order to satisfy a

113



specified demand, d;. When defined for a contiguous set of time periods, each constraint
overlaps its predecessor by one period.
Production-inventory constraints can alternatively be written in a cumulant form

[e.g., Johnson and Montgomery, 1974, pp. 197-199]:

Z Xy > Z dy V.

<t <t

These two almost equivalent forms yield different values of casfactor r. Each con-
straint of the staircase form has width two. In contrast, camulant constraints have a width
increasing from 1 to |T'|. Although a proximal cascade is unaffected, the cumulant form
may lower the associated Lagrangian cascade’s solution quality because more rows must
be Lagrange-relaxed. Reformulating cumulants as staircase constraints for the Lagrangian
cascade provides the simplest redress.

Even though casfactor  gives a warning when cumulant constraints are present, the

cumulant form may improve computational efficiency. Consider these two basis matrices:

1 0 0 00 10000

-1 1 0 00O 11000

S= 0 -1 1 00 C=|11100
0 0 -1 10 11110

0 0 0 -11 11111

The basis S arises from a set of tight staircase production inventory constraints, while the
basis C derives from an equivalent set of cumulant constraints. Note that S = C~. Be-
cause of sparseness of the inverse, solver computations could be significantly reduced by

cumulant constraints.

3. Rows that are Always-Active

A proximal cascade relies on a cascade index set that has few rows active in every
subproblem. Rows whose associated columns all have null cascade index “0” are always-
active and are tallied by the allact r gauge. Additionally, a row associated with any column

with null index “0” must be active until the null-indexed column is fixed. Inactivating this
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row prior to fixing the null-indexed column allows subsequent subproblems to alter the
column’s level, possibly violating the inactive row.

To illustrate how always-active constraints can reduce cascade suitability, consider a
modification of problem S from Chapter II. This modification includes some intermediate

time period 7, and variables A and B that are bounded by d in an always-active constraint.

ZS = min Z htXt

teT

s.t. Z a'tt’Xt' + A Z St V1 _<_ t<T
t'eTS:
Z awXey +B>s; Vr<it< iTI

t'eTSt

A+B<d
X;>0vteT A,B2>0.

Define the proximal cascade subproblems as

zn=3" %" hX+min ) hX

n'<nteTFn' teTC”

st. Y. awXe+ A2 ss— . Y. awXy VteTCht<rt (SLI)

t’'eTS:NTC™ n'<nyeTS,NTF™
Z atthtl + B Z St — Z Z att/X:/LI vVt € TCn,t >T (S]Z)
v eTS:NTC n'<n ¢/ eTSNTF'
A+B<d (S1.44)

X,>0vVteTC® A,B>0.

Constraint S7.44 must be active until both A and B are fixed, which occurs in the last
subproblem. Furthermore, each row of constraint set S1./ must be active until A is fixed.
A similar condition holds with B for each row of S1.2.

This example illustrates that always-active rows may or may not affect cascade suit-
ability. In some cases, always-active rows may cause solution time to be increased modestly
by enlarging each associated subproblem. For example, if the always-active row is redun-
dant, and a presolver does not detect the redundancy, the only negative effect is increased

solution time. But in other cases, always-active rows may inflict infeasibility on the later
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proximal cascade subproblems because their inactive columns have already been fixed by
earlier subproblems. This could occur if, for example, problem S above has only one feasi-
ble solution, and that solution includes A = 0, and B = d. In that case, a cascade that fixes
A > 0 as a result of early subproblems will culminate with an infeasibility.

Lagrangian cascade solutions will typically have better quality when few rows are
“always-active.” A proximal cascade row that is always-active must be “always Lagrange-
relaxed” in the Lagrangian cascade to preserve the Lagrangian bound for the monolith. If

optimal Lagrange penalties are not known, low solution quality may result.

4, Special Conditions in the First and Last Subproblems

Linear programs with time, priority or other candidate ordinal cascade index set
may have special boundary conditions, such as specification of inventory before the first or
after the last period. Consequently, the first or last subproblem may have unique variable
or constraint blocks associated with these boundary conditions. Although starting condi-
tions generally do not affect cascade suitability, ending conditions may result in cascade
infeasibility due to myopia. In this case, a model reformulation to include elastic persis-
tent constraints [Brown, Dell, and Wood, forthcoming] may redress the infeasibility. We
suggest this approach could be applied to a proximal cascade in a production-scheduling
LP, for example. These constraints would penalize deviation from target inventory values
at the end of each subproblem. The target values would be specified to approach over time

the required inventory of the last period, which is strictly enforced.

The gauges developed in this section suggest cascade suitability of a general LP by
evaluating three pertinent model characteristics. As we have shown, however, caution must

be taken when using them.

B. WHEN ARE CASCADES APPROPRIATE?

Cascades are appropriate if monolith structure is suitable and there is sufficient
reason to warrant any loss of monolith optimality. The following sections outline three

conditions where a suitable model should be cascaded.

116



1. Cascades used with Large Problems

We use cascades of large problems to reduce solution time. Empirically, solution
time for a linear program increases super-linearly with problem size. A cascade reduces
solution times (thereby allowing larger problems) by breaking the monolith into smaller
subproblems. The cascade implementation of NRMO supports this conjecture. When the
cascade overlaps are small, both proximal and Lagrangian cascades are solved using roughly
the same time required by the monolith. The NRMO tests also show a dramatic time sav-
ings when each subproblem solves using only installed memory and the monolith solution
requires disk “paging.” In this case, the combined proximal and Lagrangian cascades solve

in much less time than the monolith.

2. Cascades to Induce Myopia

Cascades can be used to ensure models do not presume knowledge that is unavail-
able due to temporal, spatial, or other “remoteness,” i.e., lack of proximity. This is the case
with NRMO, which models a myopic scheduling process. Conversely, enforcing myopia
without a cascade is very tedious for any moderately sized problem, as demonstrated below.

Consider how myopia would be expressed in a single monolithic linear program.
Primal feasibility is enforced for all the constraints, yet dual feasibility and complemen-
tary slackness must hold for each myopic solution sub-horizon. To illustrate, consider a

modification of problem S:

(S) 7% =min ) hX,

teT
s.t. Z att/Xt' Z St vVieT

t'eTS:
X:>0 vteT.
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Problem SCAS ™ is the corresponding proximal cascade formulation:

(Scas™ zr=>" 3 mXY+min ) hX

n'<nieTF? teTCcn

s.t. Z att/th Z St — Z Z ant’fl Vt € TC™

YeTS:NTCn n'<n ¢ eTSNTF™
X; >0 vt e TC™.

Consider a 4-period instance of S with a single period overlap, but with the additional stip-
ulation that the X; decision be made prior to knowing the values of h4 and s4. A proximal

cascade formulation SCAS easily incorporates this situation:

(SCAS 1) miny hX; +heXo +h3 X3
st anXa > 8 (Wl)
an X1 +anX: > s;  (Wa)
azX; +agzXs > s3  (Ws)
X17 XZa X3a 2 0
(SCAS2) h1X11+ miny heXs +h3Xz +haXy
st a0 Xs > sy —anXi
azXy +a33X3 > 83
a3 X3 +auXy = 4
X2: X3a X4, Z 0.

An equivalent monolithic formulation that formally exhibits “myopia” hasto satisfy
both the dual feasibility and complementary slackness conditions of SCAS ! in addition to
the original constraints. This can be expressed by introducing surplus columns R and slack

columns L :
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(M)
minx g w,L h1X3 +hoXo +h3 X3 +hy X4

s.t (111X1 —R1 = 81
anX1  +axeX —-R, = s (M)

az2 X2  +a3sXs —R3 = s3

+a43X3 +agu Xy > 84

aunWi  +aaWs +L; = h
a2 Ws +azW; +Ly = ha (M2)

0.33W3 +L3 = hg
R1W1 =0 R2W2 =0 R3W3 =0 (M3)

LiX;=0 LyXo=0 L3X3=0

X1,..,X4>0, Ry,Ry,R3>0, Ly,Ls,L320. (M.4)

Two difficulties arise with this formulation, foremost being tractability. Constraint
block M.3 (complementary slackness) specifies that at most one of each constraint’s ele-
ments may exist in the solution at any time. This represents a logical condition where “at
most one” element is non-zero, and can be enforced with binary auxiliary variables [e.g.,
Hillier and Lieberman, 1986, p. 394]. Alternately, this condition could be imposed by a
complementary pivoting algorithm [e.g., Bazaraa, Sherali, and Shetty 1993, pp. 493-500],
although this is a heuristic. A model with many time horizons may need to enforce myopia
for each horizon, with a concomitant increase in the number of constraints.

The remaining difficulty with the above formulation is that it still doesn’t completely
enforce myopia. In the presence of multiple optima, the dual feasibility and complementary
slackness constraints of M allow selection of the “best” periods’ 1, 2, and 3 decisions with
respect to period 4. A genuinely myopic formulation selects arbitrarily among the first
solution horizon’s multiple optima, because it has no foresight that allows tie-breaking.

The literature offers no other method of enforcing myopia in a monolithic formula-

tion. Cascades appear to be a very attractive way of modeling this restriction.
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3. Cascades to Isolate Nearly Independent Subproblems

Cascades can be used to reduce solution time when independent, or at least not
strongly interdependent, subproblems can be isolated and solved very quickly. Although
solving subproblems for this purpose is not the focus of this dissertation, using subproblems
to produce a crash basis remain a third reason to cascade. We overview this strategy here
for completeness.

A classic example of isolating nearly independent subproblems is the multi-commod-
ity network, with lots of easy network subproblems coupled by joint capacity constraints.
Solving each network subproblem, ignoring joint capacitation constraints, and then using
these subproblem solutions to give an advanced starting solution for the monolith may solve
the monolith much faster than a single cold-start solve attempt [e.g., Staniec 1987]. The
CPLEX solver [1994, pp. 33-35] offers an option to solve a single imbedded pure net-
work and then use the solution to crash the monolith. Clearly, the advantage of such an
indirect approach is enhanced if there are many disjoint subproblems (for example, hun-
dreds of commodity networks) and if only a few joint commodity capacitation constraints
are actually binding at optimality.

Brown, Graves, and Ronen [1987] use cascades to solve the LP relaxation of large
set partitions. Here the cascade index set is not deduced from any model indexing, but must
be determined by heuristic topological sorts of the technological coefficients. Once sorted,
the cascade initially restricts each subproblem to active variables with non-zero values from
prior subproblem solutions, and then relaxes to all active variables. The authors solve larger

and larger nested subproblems until the monolith is solved.

C. IMPROVING CASCADES WITH DUAL PRICES

1. Lagrangian Penalties for Proximal Cascades

This section explores how subsequent proximal cascade subproblems may exploit
dual information from previous cascades or subproblems. We then demonstrate two such

methods on ten small staircase problems.
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Until now, dual information from a proximal cascade provided penalties only for
the Lagrangian cascade. However, a similar idea extends to a proximal cascade, which also
relaxes constraints. In the case of time, a proximal cascade subproblem relaxes the con-
straints of “future” periods, i.e., the set of periods that are not active in any subproblem
1,...,n. Lagrangian penalties can “charge” active columns for future resource usage, trans-
forming relaxed proximal cascade constraints to Lagrange-relaxed constraints. This is sim-
ilar to the Lagrangian cascade, except Lagrangian subproblems incorporate penalties from
both prior and future constraints. A proximal cascade explicitly enforces all constraints by
sending fixed primal columns forward to the next subproblem. This is necessary because
even optimal Lagrangian penalties do not guarantee that relaxed constraints are satisfied.
The Lagrangian cascade is not explicitly altered, although any improvement in the prox-
imal cascade solution quality will be reflected in the associated duals, and therefore the
Lagrangian cascade.

To illustrate, consider a modification of problem SCAS™ for some 3, 2> 0 :

22=Y" Y hX®+min 3 X+ DY, B (st— > antf)

n'<n teTFn’ teTCn lastpm<t<t+m t'eTS:NTC™
7
s.t. E atthtl Z St — E E att:Xt',‘ YVt € TCn
t'eTS:NTC™ n'<nt' cTS,NTF™

X: >0 vt € TC™.
The additional objective term does not provide a straightforward Lagrangian relaxation,
since it only includes active columns, rather than all columns from the original row. How-
ever, the formulation makes clear the intention to reward satisfaction of rows in subproblem
n + 1 by columns in subproblem n. By ignoring the constant term, the desired formulation

is

(SL™) Zzr=%" Y kX! +min ST omXe— ) B > awXe

n'<n teTF» teTCn lastpn<t<t+m  t'€TS:NTC™
!
s.t. E atthtl Z St — E E att/X{,’ Vit € TCn
t'€TS:NTC™ n'<n ¢ cTSNTF™'

X:>0 vVt e TC™.
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Assuming 3, exists only for ¢ € T, the proximal cascade solution value remains unmodified:

2V =3 D X

neNC teTF™

This formulation not only enforces feasibility of active rows, but encourages satis-
faction of future subproblem rows through the use of some 3, > 0. Grinold [1983] intro-
duces a similar technique for infinite horizon programming, although his formulation also
accounts for the contribution of inactive columns, and retains the constant term as a measure
of “salvage.”

The Lagrangian penalty formulation requires exogenous specification of the La-
grange multiplier, 3,. How one selects a proper value depends on the underlying motivation
for the cascade. If omniscience is acceptable and multiple series of cascades (proximal and
Lagrangian cascades performed more than once) can be made, the multipliers for a subprob-
lem can be taken from the corresponding constraints of an earlier solution of the same sub-
problem. Each subproblem receives prices from future periods of the previous series, and
re-solves based on those prices. On the other hand, if myopia must be enforced, multipli-
ers are passed forward from “similar” constraints of previous subproblems. Computational

results using each of these strategies are discussed next.

a. Iterated Lagrange Multipliers

Iterated Lagrange multipliers derive Lagrangian penalties from the previ-
ous cascade series. In tests described in this section, these series are run until no further
improvement in solution quality occurs.

Instances of model S with 20 periods and varying staircase overlaps m pro-
vide a test case for Iterated Lagrange multipliers. Problem S is reformulated into subprob-
lems of the form SL™. The test considers 10 different sets of overlap and cascade para-
meters. The penalties (3;) for Lagrange-relaxed constraints in the proximal cascade come
from the previous series; the initial series of each set uses B, = 0. Subsequent series’ penal-
ties derive from the last subproblem in which the corresponding constraints are active. The

Lagrangian cascade selects penalties from the most recent proximal cascade subproblem in
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which the corresponding constraints are active. Table 6 describes the results.

. ) Series 1 Series 2 Series 3 Series 4
Set# m caswid v Iwid
% gap % gap % gap % gap

1 1 4 3 5 7.0 2.0 2.0 2
2 1 5 2 5 10.7 - - -

3 1 7 2 7 11.5 1.7 2.0 0
4 2 5 4 5 23.2 - - -

5 2 6 2 5 22.4 15.2 - -
6 2 6 4 5 215 15.6 1.0 -

7 2 6 5 5 212 13.9 0

8 2 7 4 7 13.2 8.8 - -
9 2 10 2 10 13.8 0

10 2 10 4 10 5.7 1.3 0

Table 6. Sets of cascade SL use various widths and overlaps to test iterated Lagrange multipliers. In this test, each pair of
proximal and Lagrangian cascades forms a series. The multipliers for proximal cascade Lagrange-relaxed constraints in
each subproblem come from the previous series. The initial series’ multipliers are 0. Each subsequent series’ multiplier
comes from the last subproblem in which the corresponding constraint is active. The Lagrangian cascade selects a multi-
plier from the most recent proximal cascade subproblem in which the corresponding constraint is active. For instance, Set
#6 has staircase overlap 2, proximal cascade width 6, proximal cascade overlap 4, and Lagrangian cascade width 5. The
series 1 gap of 21.5% reflects no dual information. The series 2 and 3 gaps of 15.6% and 1.0%, respectively reflect new
and more accurate multipliers. A “-” series entry indicates that the gap oscillates back to a previous value, and no fur-
ther improvement occurs. The results show significant gap improvement in all but sets 2 and 4. The mean gap is reduced
from 15.0% to 5.9%.

These results show that information regarding future constraints reduces the
average proximal-Lagrangian gap from 15.0% to 5.9%. The gap is reduced in 8 of 10 sets.

Incorporating penalties in the proximal cascade obj ective improves the La-
grangian cascade quality as well. Averaged over the 10 sets, the Lagrangian cascade solu-
tion values account for 53% of the total gap reduction, proximal cascades account for the
remaining 47%.

Iterated Lagrange multipliers provide encouraging results, but require mul-
tiple series of cascades that “look into the future.” Consequently, any improved solution

quality requires more computation and omniscience.
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b. Forward Pass Multipliers

We can pass forward dual multipliers from prior subproblems in a proximal
cascade without violating myopia. Myopia does not preclude incorporating past informa-
tion to better accommodate the future. To the extent that constraints have homogeneous
structure from period to period, Lagrange multipliers from previous subproblems may ap-
proximate resource consumption penalties of future periods.

We use cascade SL to demonstrate forward pass multipliers since it has a
homogeneous structure. In this test, each penalty passed to subproblem n + 1 is the mean
of the optimal multipliers from the staircase constraints of the last m periods in subproblem
n. For example, if the active periods of subproblem 1 are 1 through 10, and the staircase
overlap is 2, the multipliers passed forward to subproblem 2 are the average of the optimal

staircase duals from periods 9 and 10.

Set # Unaltered Forward Pass
% gap Multipliers % gap
1 7.0 6.8
2 10.7 10.7
3 11.5 11.5
4 232 12.9
5 224 37.6
6 21.5 21.1
7 21.2 21.2
8 13.2 2.7
9 13.8 7.9
10 5.7 3.8

Table 7. Sets of cascade SL use various widths and overlaps to test forward pass multipliers. Using the same widths and
overlaps as Table 6, sets 1 through 10 are used to test a single cascade series with dual penalties passed forward from
each proximal cascade subproblem to its successor. Each penalty passed to subproblem n + 1 is the mean of the optimal
multipliers from constraints of the last m periods in subproblem n. Myopia is not violated, since only “historical” resource
prices are used to predict the future. For instance, the gap from set #4 without passing forward multipliers is 23.2%. The
gap improves to 12.9% when multipliers are passed forward. Only set 5 produces a larger gap, and the average gap is
reduced from 15.0% to 13.6%.

Table 7 describes the results of this test using the same sets from Table 6.

The percentage gaps shown are with and without forward pass multipliers.
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Incorporating forward pass multipliers yields the same or smaller gap in 9
out of 10 sets. This result is not surprising. Rather than simply ignoring the restrictions
imposed by the future, the model predicts the future based on an average assessment of the
past.

As with iterated Lagrange multipliers, over half of the forward pass multi-
pliers gap improvement results from better dual information strengthening the Lagrangian
bound. On average, 62% of the average gap reduction comes from the Lagrangian cascade;
38% comes from proximal cascade improvement.

Passing forward average values is imprecise; performance can be improved
considerably given any underlying knowledge of which past constraints are similar to future
constraints. For example, the relative value of resources A and B often remains similar
across time. Averaging the two values of subproblem n’s marginal cost for A and B makes
little sense when forecasting subproblem n + 1’s penalties. Cyclical similarity also might
occur in a model that, for example, has a cascade index set covering many weeks in daily
time increments. In this situation, last Friday’s multipliers might provide a better forecast
for next Friday than an average of last Thursday’s, and Friday’s, and Saturday’s multipliers.
Perhaps an idea as simple as exponential moving average duals would capture the sense of
proximity using cascades. Applying this technique is model specific, and presents a topic

for future research.

2. Explicitly Improving Lagrangian Cascades

Just as traditional Lagrange multiplier search methods tighten the bound provided
by Lagrangian relaxation [e.g., Parker and Rardin, pp. 212-237], 2 Lagrangian cascade also
benefits from improved multipliers. The iterated Lagrange multipliers method provides an
opportunity for a multiplier search after each series. However, search methods are com-
putationally expensive, so providing this feedback may lengthen the series considerably.
Since the iterated Lagrange multipliers method already updates multipliers from series-to-
series and improves the Lagrangian bound as a result, the extra effort may not be warranted.

Nonetheless, it remains an area for future research.
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D. A CASCADING VARIATION OF BENDERS’ DECOMPOSITION

In this section, we show that cascade solution quality improves significantly on test
problems using a strategy that adds cuts from previous cascade series. These cuts, although
weak, yield problem S solution values within a few percent of monolith optimal after several
series. This approach is a heuristic variation of Benders’ decomposition [Benders’ 1962].

The 2-stage Benders’ decomposition of Van Slyke and Wets [1969], and its multi-
stage extension by Birge [1985] successively add cuts that support the (convex) Lagrangian
dual function. Using a variation of this approach in concert with the iterated Lagrange
multiplier technique, we attain a tighter gap between the proximal and Lagrangian cascade
solutions on 10 simple staircase problems.

In order to demonstrate how Benders’ cuts can be incorporated into a proximal cas-
cade, define TE™ = {t : t >lastp™} as the future periods (the set of periods that are not
active in subproblems 1, ...,n). Problem BCAS™ is the solution to the remaining periods,
given the fixed columns of subproblems 1,...,n — 1. In other words, BCAS™ provides the

/

solution to the remaining monolith, given the cascade solution for ¢ € U, TF™ :

(BCAS™) zr=Y" Y hXY + min > he X, + min > rX,
n'<nteTFn’ teTCn teTE™
st. > awXe> si— ) ST awXp VteTC"  (BCASD)
' eTSNTCn n'<n ¢ eTS,NTF™
Z atth: Z St — Z G,tngtl Vt € TE™
t'eTS:NTE™ t'eTS:NTC™

X:>0 Vte TC"UTE™.
Taking the dual of the rows and columns indexed by ¢t €TE™ yields:

Zn = Z z R X" +n§n z htXt+mgx Z B (st-— Z anv)

n'<n teTFn teTCn teTE™ t'eTSNTC™

st.  (BCAS.1),
S Buay <h VteTE" (BCn.I)

t/:teTSy

X,>0 vteTC" 8,>0 VteTE"
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Figure 12. This figure illustrates the terms of a dualized constraint from problem BCA4S ™, which represents the remaining
monolith given the solution to subproblems 1, ...,n — 1. The periods of BCAS ™ are partitioned into sets TC™and TE™.
TC™ has the same width as all previous subproblems; TE ™ consists of all the future periods. In the example, the last period
of TC ™ is 10, the first period of TE ™ is 11, and the constraint overlap m is 2. When rows indexed by TE™ are dualized, the
left-hand-side terms in the row indexed by period 11 are B;;a11,11, B12012,11, and B13813,11, OF 3 r11¢7s,, Ber@e7,11-
Refer to Figure 12 for an illustration that describes why the left-hand-side terms in equation
BCn.1 are all indexed by ¢ €TE™.

Proceeding with the Benders’ decomposition, the above formulation is equivalent

to

zn=3%" 3 htxp’+n§n S hXe+ max Y B (se— > awXe

’ ’ 1<i<|B| n /
n<n teTFn teTCn teTE ' €TS;NTC™

s.t. (BCAS.1)
X: >0 vVt € TC™.
where ﬁgi) is a component of vector b® € B, the set of extreme points defined by the

region:

Z ,Bt/atlt S ht YVt € TE"
t:t€T Sy
B,>0 VteTE"

(for simplicity, and to avoid the need for feasibility cuts, we assume that the feasible region

in this problem is a bounded polytope [e.g., Parker and Rardin, 1988, pp.237-244]). Thus,
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cascade BCAS ™ may be rewritten as

Zr=%" Y hX{ +min S X 40"

n'<nieTFn' teTCn
st. (BCAS.1)
6" > Z Bgz) (St - Z att’Xt’> i=1,..,|B] (BCAS.2)
teTE™ t'eTS:NTC™

X; >0 Yt € TC".

Each of these proximal cascade subproblems serves as the master problem for its
successor and the subproblem of its predecessor. The Benders’ subproblem consists of de-
riving additional cuts of the form given by BCAS .2. A subset of these constraints approxi-
mates BCAS ™, which is an approximation of the monolith when n = 1.

Cut generation for BCAS ™ is done by BCAS n+1  Unfortunately, instead of the sub-
problem implied by BCAS .2, the available subproblem provided by BCAS™!is

(BCAS™?) =3 Y hXP4min Y RXetmin > X
n'<n+1teTFn' teTCn+1 teTEn+1 ’
s.t. Z G/tthgl Z St — Z Z atth{,L' Vt € TCm+l
teTSNTCn+1 n'<n+1¢eTS,NTF™
Z au:Xt: > 8 — Z CLuIXtI Vt € TEn+1
t'eTSyNTE™+1 ¥ eTS,NTCn+1

X, >0 vt € TC™t' UTE™ !,

Taking the dual of BCAS ™*! yields
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Zr= Y > hX?

n/<n+lteTFn

+mgx Z Be | 8t — Z Z att'X;}, + Z B <3t— Z att'Xt'>

teTCntl n'<n+l ¢ eTS,NTFn' teTEn+! teTSNTCn+1
s.t. > Byan <h, VteTC™! (BCn+1.1)
t't€TSy
> Buaye <h VteTE™. (BCn+1.2)
t':t€TSy

Because of the cascade overlap, TE ™ #TC "1 UTE ™*!. Consequently, the subproblem ex-
treme points required by BCAS™ are defined by BCn.1, while the subproblem extreme
points of BCAS ™! are defined by BCn+1.1 and BCn+1.2. Thus, the extreme points
b® € B required by BCAS™ are not the same as the extreme points provided by the dual
of BCAS™!. However, only the cascade overlap distinguishes the two feasible regions,
which suggests the two regions share many similarities.

The first series of the cascading variation of Benders’ decomposition solves sub-
problems BCAS ', BCAS?, ...,.BCAS ™V, without any cuts. Subsequent series solve these sub-
problems in the same order using the heuristic cuts generated by the dual variables from
BCrn+1.1 and BCn+1.2 of all previous series. Each series includes one additional cut per
subproblem. The proximal cascade solution value is the objective value of the last subprob-
lem of the most recent series, since TE N # (). A Lagrangian cascade uses the dual variables
supplied by the most recent proximal cascade.

Table 8 gives results for test sets 1 through 10. In general, the method does not
converge to monolith optimal, but stabilizes consistently within a few percent in all of these
examples. As with iterated Lagrange multipliers and forward pass multipliers, over half
(60%) of the gap reduction is attributable to the Lagrangian cascade, which reflects the
benefit of more accurate Lagrangian penalties.

These results suggest a promising alternative to Lagrangian methods of passing dual
information within the proximal cascade (although this method should not be used when en-

forcing myopia). Unlike traditional nested decomposition for staircase models, the cascad-

129



Benders’ Series Unaltered Iterated Lagrange Benders’

Set# until Stable % gap Multipliers % gap % gap
1 13 7.0 2 0
2 10 10.7 10.7 72
3 2 11.5 0 1.7
4 9 23.2 23.2 6.5
5 3 224 15.2 4.0
6 4 21.5 1.0 33
7 4 212 0 33
8 3 13.2 8.8 1.3
9 2 13.8 0 0
10 3 5.7 0

Table 8. Sets of cascade BC AS use the same widths and overlaps as in Table 6 to test the cascading variation of Benders’
decomposition. Each Benders’ series includes one more dual cut in the proximal cascade than the previous series. By
retaining old cuts, this method is more effective at gap reduction than unaltered or iterated Lagrange multipliers methods.
For example, set #8 requires 3 Benders’ series to stabilize at a gap of 1.3%. In contrast, the unaltered cascade produces
a gap of 13.2%, while the iterated Lagrange multipliers cascade has a gap of 8.8%. The Benders’ gap is always less than
the unaltered gap, but is slightly larger than the iterated Lagrange multipliers gap in sets 3, 6, and 7. The average Benders’
gap is 2.7%, while the unaltered and iterated Benders’ gaps are 15.0% and 5.9%, respectively. Additionally, the Benders’
approach typically yields gaps within a few percent, while the iterated Lagrange multipliers gaps are more erratic.

ing variation of Benders’ lacks a convergence proof. However, traditional nested decompo-
sitions have no cascade overlap, and must enforce rows with fixed column levels at the risk
of infeasibility. Thus, the cascading variation of Benders’ decomposition has an advantage

over many nested formulations, which must add cuts until convergence is obtained.

E. CASCADES WITH FIXED FUTURE PRIMALS

We improve solution quality on test problems by fixing all inactive columns at th